LENESANS

Development Guide

RA4W1 Group

Bluetooth Mesh Development Guide

Introduction

Bluetooth Mesh Stack is the software library to build a mesh network that is compliant with Bluetooth Mesh

Networking Specification and to perform many-to-many wireless communication.

This document describes

the overview of software architecture and its layers of the Bluetooth Mesh Stack and how to develop a Mesh
Application. For more information on how to get started with Bluetooth Mesh Stack, refer to "RA4W1 Group

Bluetooth Mesh Startup Guide" (RO1AN5847).

Target Device
RA4W1 Group

Related Documents

The following documents are published on Renesas website.

Document Title

Document No.

Bluetooth Mesh Development Guide

RA4W1 Group R0O1UHO0883
User’s Manual: Hardware

Renesas Flexible Software Package User’'s Manual -

RA4W1 Group RO1AN5653
Bluetooth Low Energy Application Developer's Guide

RA4W1 Group RO1AN5847
Bluetooth Mesh Startup Guide

RA4W1 Group RO1AN5848
Bluetooth Mesh sample application Application Note

RA4W1 Group RO1AN5849

This document

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022 RENESAS

Page 1 of 76

RA4W1 Group Bluetooth Mesh Development Guide

Contents

1. Bluetooth MeSh OVEIVIEWccccoiiieieeeeec e, 4
1R R o o = PO PP UPP PP 4
L2 (=T o 1T o | TP EPP PO PPTPPPTP 4
LG T o [0 | (=1 S PP PP PPTPPPTP 5
S = | (SR 5
R T 1Y/ [To =SS 6
1R TRt B O 1 =T o1 =T T IR =T Y= SR 6
IR T~ o 10 aTo =1 (o] o W g g ToTe [=] - PO UPP PSPPI 6
1.5.3 Configuration MOGELoeiiiiiiiiie et e e e e e e e e s et e e e e e e e e e sanataaeeeaeesseannsraneeaaeeas 7
1.5:4 HeEaIN MOEI ...t e e e et e e e e s e e e e e e e e e e e nnbreeeeeeeeas 7
1.5.5 Publication and SUDSCIIPLION. et e e e e e e e e e e e e e e e e ennneeeeeaeeas 7
L I I [T T o [S TSP OTPPPOTPRPNS 8
B A Y/ (=TS T = 7Y =T SRR 9
1.8 PrOVISIONING ..o —— 10
LIRS R O70) o) To |8] =1 (o] o RSP PRR R RT 11
I O @] o (oY g b= LI oY= L (U =Y SRR 12
R O T = - OSSP 12
L LI o PP PSP P PRI 13
R 0 IR T 4 =T o T £ oY1 o S 14
2. Mesh AppliCatioN OVEIVIEW........ciiiieieeeeeee e 15
D2 B o V=T (ST 1 0T (U SRR 15
D 1S I] (UTod (1= SRR 17
2.3 MeESh APPIICALION ... ————— 18
2.3.1 MESh COre MOTUIEeeieiiiiiee ettt e ettt e e sttt e e e sttt e e e amteeeeeemteeeeeanbeeeesanteeeesanseeaeanns 19
2.3.2 MeSh MOl MOAUIEcoeiiiii ettt e e e e e s et e e e e e e e s b e eeeeeeeas 19
DZARC TRC TN |V [=T1 o I\ (oo F=Y IX @7'eT g o 1= 1 4[] o SR 19
2.3.3.1 Configuration MOE!eeiiiiiiiie bbbttt e et et e e s e e e e e e aabeeeeen 21
2.3.3.2 HEAIh IMOEL ...ttt e e e e st e e e st e e e e asteeeeeanteeeesenteaeesanseeeesansanaenns 23
2.3.3.3 GeNEriC ONOTT MOAEIco.ueiiiiiiiiiie et e et ettt e e e sttt e e e sttt e e e anbeeeeesnteeeeeanreeaeaans 24
bR TR I V=T o To (o] gl Y/ [To [PO P PUPP O PPTPPPRP 24
2.4 BIUEtOOth MESH STACKcooiiiiiiie ettt e e ettt e e e et ee e e snteeeeeanbeeeeean 25
DA T = 1071 (oo 1 g === T SRR 27
2.5.1 Bearer Functions for Message Transmission and ReCEptionccceeiiiiiiiiiiiiiiiiiiee e 27
2.5.2 Bearer Functions for Connection CONTrol...........ooi e e e 28
2.5.3 MESH GATT SEIVICES ...eeieiiuiiieeiitiiie ettt ettt ettt e e ettt e e ettt e e e s sate e e e e aateeeeaaateeeeeasteeeesaseneeeanseeeeeaneeeaeans 29
2.5.4 ADV BeArer OPEIALiONcccciiiiiiiiiiie e e e ettt e et e e e e e e ettt e e e e e e s et e e et e e e e e e anraareaaeeeaaaanranaaaaaean 30
2.5.5 GATT BaArer OPEIrationccccuuiiiiiie ettt e e e et e e e e e e s et be e e e e e e s e aaanbaaeeeaeeeseaansraneeaaeeas 31
2.6 MCU Peripheral FUNCHONS ...ttt e e e et e e e e e e e e et e e e e e e e e e anneeneeaaeeas 32
2.7 Mesh Sample Program ConfigUIationoooiiiiiioiiiiie et 35
RO1AN5849EJ0105 Rev.1.05 Page 2 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2.8 Bluetooth Bearer ConfigUrationoooiiiiiiiiii e e e e e e e e et e e e e e e s e ennraaeeaae s 37
3. Application DeVEIOPMENTcco i 38
R Tt B |V =11 I (01U 1] = PSP OOPPPPPPPPN 39
I T0Z2N \[oTo [O o1 a1 e [U] =1 1To] o FAN SO PPPPRN 42
K B o (e)Y/] To] o] oo [PPSR 43
3.3.1 PrOVISIONING SEIVET ..ottt e e et e e e a b e e e e e b bt e e e bt e e e e ebbe e e e annes 43
3.3.2 ProViSIONING SEQUENCE.......cciiiiiiii ittt et e e s bt e e e st et e e e bt e e e abbe e e s anbe e e e annes 46
G (o) QYOS PPPPPPPPPNt 50
K o N o (o) QYA =] Y= USRI 50
R e (o) 4 YA O 1Y o | USSP 52
K T o (o) VS 1T o[- o T = PSPPI 54
S T ol 1T o] 1 o USSR 56
S T IO 1= o o 1\ Lo Yo [USSR 56
3.5.2 LOW POWEE INOGE ...ttt ettt e e e e ettt e e e e e st bttt e e e e e e e s bbb reeeeeeeaaannes 57
3.5.3 LOW POWEI NOUE SEUUENCEeeiiiieiieiiieiee ettt e ettt e e e e e e st e e e e e e s st abeeeeaaeeesantsseeeaaeeaaaanes 60
3.5.4 FrieNd NOGE SEQUENCEeuuiiiiiiie ettt e e e e e ettt e e e e e e e e st a e e e e e e e saassteeeaaaeeesanrsreeeaaeeaaannes 62
K G I O 0110 U] =1 1] o PSP TPPR 64
3.6.1 CoNfIGQUIALION SEIVET ...ttt e bt e s e bt e e s e bb e e e e aanes 64
3.6.2 Configuration SErVEr SEQUENCEcoiiiiiiiiiiiiiii ettt e e e e 65
3.7 HEAIN IMOGEI ...ttt e e e e et et e e e e e st e e e e e e e e e e nbbereeeeeeeaannes 66
K A B o == (g 7= T Y SRR 66
3.7.2 Health SErver SEQUENCEuuiiiiie ettt e e e e e e e st e e e e e e ss et abeeeeaaeessastsreeeeaeeenaanes 69
SRS T AN o o] [o= i o T 1 o T [USSR 70
S I 1= T V=Y g 1Y o T = SR 70
S 0 O 1= o | 1Y o T Y USSR 72
3.8.3 Generic ONOFf MOAEI SEQUENCEcuuiiiiiiie ettt e e e e e e e e e e e e e e sentsreeeeaeeeeaanes 74
3.8.4 Vendor MOl SEQUENCEuuuiiiie e ittt e ettt e e e e e e e e e e e e e e e st aeeeaeeesaatsteeeaaaeeesasrsreeeaaesaaannes 74
Y o oY T [75
4.1 Command Line INterface Programcoiiiiiiiiiiie et e et e e e e et e e e e e e st e e e e e e e s snnrnreees 75
4.2 PrOQIam SIZE ..ccoei i —————— 76
RO1AN5849EJ0105 Rev.1.05 Page 3 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1. Bluetooth Mesh Overview

This chapter describes basic concepts of Bluetooth mesh defined by Bluetooth Mesh Networking
Specifications. For more information, refer to Mesh Model and Mesh Profile specification on Specifications
List. Figure 1-1 shows the typical topology of Bluetooth mesh network.

Node Node
4,/»
\ Node
Node
Node Node
Element Node Node Element
Client Model Messages Senver Model

\4

A

Figure 1-1 Basic Composition of Bluetooth Mesh Network

1.1 Node

A device joining a network is referred to as a Node. Network is a group of nodes sharing common address
space and encryption keys. Communication among nodes is encrypted with Network Key. Each network is
identified by Network ID generated from the Network Key. By default, one Network referred to as primary
subnet is built. Multiple subnets can be also built to isolate communication scope.

1.2 Element

Element is a logical entity within a node. A node must have at least one element. And also the node can
have multiple elements. First element is referred to as primary element. Each element is identified uniquely
in a network by Unicast Address. The unicast address is assigned by provisioning.

RO1AN5849EJ0105 Rev.1.05 Page 4 of 76
Dec. 27, 2022 RENESAS

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

RA4W1 Group Bluetooth Mesh Development Guide

1.3 Address

Address used in a mesh network has 16-bit length. Unassigned address, Unicast Address, Virtual Address,
and Group address are defined as address types.

Table 1-1 Address Types

Address Type Value Value Range
Unassigned Address 0b0000000000000000 0x0000

Unicast Address 0b0xxxxxxxxxxxxxxx (excluding 0b0000000000000000) | 0x0001 to Ox7FFF
Virtual Address 0b 1 OXXXXXXXXXXXXXX 0x8000 to OxBFFF
Group Address O0b T 1XXXXXXXXXXXXXX 0xCO000 to OxFFFF

¢ Unassigned address
Unassigned address is set to an element which has not been assigned unicast address yet. Unassigned
address cannot be used as source address or destination address in a message.
e Unicast address
Unicast address is an address to identify a single element. 32,767 of unicast address can be used in a
mesh network. Unicast address can be used for source address and destination address in a message.
¢ Virtual address

Virtual address is a multicast address generated by a Label UUID. Virtual address can be used for
destination address in a message. Label UUID is a 128-bit value to categorize elements. This value can
be generated randomly and shared by OOB (Out-Of-Band) among devices. Also, virtual address and
Label UUID need not to be managed centrally.

e Group address

Group address is a multicast address managed and assigned dynamically according to usage. Group
address can be used for destination address in a message. Also, as shown Table 1-2, Fixed Group
Addresses are defined for specific use case. (e.g. broadcasting to all-nodes.)

Table 1-2 Fixed Group Addresses

Fixed Group Address Value

all-proxies OxFFFC

all-friends OxFFFD

all-relays OxFFFE

all-nodes OxFFFF
1.4 State

State is a value representing a condition of an element. States that are composed of two or more values are
referred to as composite states. Moreover, State that change in conjunction with other states is referred to as
bound states. The State can change instantaneously or can have transition time. Time from initial state to
target state is referred to as transition time. Also, time from current state to target state is referred to as
remaining time.

RO1AN5849EJ0105 Rev.1.05 Page 5 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.5 Model

Model is a standardized functionality so that nodes can perform typical operations in accordance with each
scenario. Model defines states, messages that act upon a state, and associated behaviors.

1.5.1 Client and server

Model has server - client architecture. Server model have at least on state, but client model does not have
state. Server model controls state of element by receiving messages the client model. Client model can get a
state of server model with GET message and set a new state to server model with SET message or SET
Unacknowledged message. Server model sends STATUS message as an acknowledge when state is
changed, or an GET or SET message is received. Server model does not send STATUS message when
SET Unacknowledged message is received.

Figure 1-2 shows node structure. A node can have multiple elements. An element can have multiple models,
but not the same model in the element.

Node

Element Element
Client Model Server Model
Server Model

Figure 1-2 Node Composition

1.5.2 Foundation models

Foundation Models are models for configuring and managing behavior of elements. Primary element of each
node must have configuration server model and health server model.

Table 1-3 Fixed Group Addresses

Model SIG Model ID
Configuration Server 0x0000
Configuration Client 0x0001
Health Server 0x0002
Health Client 0x0003
RO1AN5849EJ0105 Rev.1.05 Page 6 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.5.3 Configuration model

Configuration model is a model for configuring behavior of node. Configuration values of a node and
elements are defined as configuration states. Configuration server model has a configuration states.
Configuration client model is a model for managing behavior of configuration server by configuration
messages. Each configuration message is encrypted with a device key. Device keys are different from each
node.

1.5.4 Health model

Health model is a model for monitoring physical condition of a node. Health server model is a model that has
fault state for representing physical fault information. Health client model is a model for monitoring fault state
of health server by health messages. Each health message is encrypted with an Application Key.

1.5.5 Publication and subscription

The model transmits messages is referred to as publication and receives messages is referred to as
subscription. Model can publish messages to multiple elements by assigning multicast address as a
destination address. The model can also selectively subscribe messages which have multicast address.
Figure 1-3 shows how the model publishes and subscribes to messages. Each model sends messages in
accordance with the publish address in model publication state. If the publish address is multicast address,
each message is subscribed by multiple models in accordance with subscription addresses in subscription
list state.

Publish Address: Publish Address:
multicast address A multicast address B
element element
model model
Publication / Publication
messages for multlcast address A messages for multicast address B

VAV
A

messages for multicast address A messages for multicast address B

Subscription / Subscription\ J Subscription \ Subscription

element element element
model model model
Subscription Address: Subscription Address: Subscription Address:
multicast address A multicast address A multicast address B

multicast address B

Figure 1-3 Message Publication and Subscription by models

RO1AN5849EJ0105 Rev.1.05 Page 7 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.6 Message

Data transmitted and received in a mesh network is referred to as message. Messages are categorized as
follows whether the messages are segmented into multiple part or not.

e Unsegmented Message

Unsegmented message is a message to transport unsegmented data. The message can transport
Access PDU up to 11 bytes.

e Segmented Message

Segmented Message is a message to transport each segmented data up to 32 segments. The message
can transport Access PDU up to 380 bytes. When receiving all Segmented Messages, destination node
reassembles data.

The access layer of Bluetooth mesh takes care of assemble and disassemble of access PDU. Figure 1-4
shows the assemble and disassemble of the PDU. Each node transmits and receives Network PDU as a
Mesh Message.

Access PDU Opcode‘ Parameters
Encrypting Decrypting
Upper Transport
Access PDU | Encrypted Access Payload TransMIC ‘

Segmentation Reassembly ; Segmentation Reassembly‘ Skegmentat}on _Reassembly

Lower Transport

Access PDU ‘ Header‘ Segment 0 ‘ ‘r!eader‘ Segment 1 ‘ ‘\I—Isader‘ Segment 2 ‘
I L - 4 N 4
Encrypting Decrypting Encrypting Decrypting Er)crypting Deg:fypting
Network PDU | Header | TransportPDU [NetmiC | ‘Header\‘ TransportPDU \‘NetMIC‘ ‘Heade;‘ TransportPDU \ NetMIC |

Figure 1-4 Segmentation and Reassembly of Access PDU

Header of network PDU includes fields such as source address (SRC), destination address (DST), and
sequence number (SEQ). Network PDUs are encrypted with a Network Key, so only devices joining same
mesh network can decrypt the PDUs. Also, SRC and DST of them are obfuscated, so other devices that
does not have Network Key cannot trace the PDUs.

Header of Lower transport PDU includes SEG field to indicate whether unsegmented or segmented. And the
lower transport PDU also includes SeqZero, SegO, and SegN field to use for reassemble segmented data.

Access PDU has two fields: application opcode and application parameters. The access PDU is encrypted
with application key or device key, so data can be share among only nodes that share the keys. Applications
keys are generated and are distributed by configuration client.

RO1AN5849EJ0105 Rev.1.05 Page 8 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.7 Mesh Bearer

Mesh Bearer is a method to transport messages in a mesh network. Two types of bearers that use Bluetooth
Low Energy technology are defined as follows:

e ADV bearer

ADV bearer sends messages by the Non-Connectable and Non-Scannable Undirected Advertising.
Messages sent by ADV bearer can be received by many nodes simultaneously. Also, this bearer is
referred to as PB-ADV when transmitting Provisioning PDUs on advertising channel during provisioning.

e GATT bearer

GATT bearer sends messages over GATT service. A node of Client side sends messages by Write
Without Response and a node of server side sends messages by Notification. Before communicating
over the GATT service, establishing a connection is required. Messages sent by GATT bearer can be
received by a connected peer node only. Also, this bearer is referred to as PB-GATT when transmitting
Provisioning PDUs on data channel during provisioning.

Advertiser / Scanner
GATT Server (Peripheral role)

non-connectable and non-scannable
undirected advertisin P
// \\ (ADV_NONCONN_INgD) Noification lI Write Without Response
——

GATT Client (Central role)

Advertiser / Scanner Advertiser / Scanner
ADV Bearer GATT Bearer

Figure 1-5 ADV Bearer and GATT Bearer

RO1AN5849EJ0105 Rev.1.05 Page 9 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.8 Provisioning

Provisioning is a process for joining a network. In provisioning, Provisioning Data that includes Network Key
and Unicast Addresses of each element is distributed. Provisioning Data contains the following information.

o Network Key and Network Key Index
o Flags: Key Refresh Flag and IV Update Flag
e Current IV Index

e Unicast Address of the primary element

A device that is not joined mesh network yet is referred to as Unprovisioned Device. Each Unprovisioned
Device is identified by 128-bit Device UUID.

A device that invites other devices to mesh network and distributes Provisioning Data is referred to as
Provisioning Client or Provisioner. Generally, Provisioning Client is a smart phone or other mobile computing
device.

A device that receives Provisioning Data and joins mesh network is referred to as Provisioning Server or
Provisionee. The device that has joined mesh network is referred to as a Node.

RO1AN5849EJ0105 Rev.1.05 Page 10 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.9 Configuration
To communicate with other nodes by using Models, each node needs Configuration. By Configuration

process, information required for Model operation such as Application Keys, Publish Address, Subscription
Address is configured. Figure 1-6 shows a typical lifecycle of a node.

Newly introduced device is provisioned by Provisioner and joins mesh network. Furthermore, this device is
configured by Configuration Client and becomes to be able to communicate with other nodes with Mesh
Model. Generally, Configuration Client is a smart phone or other mobile computing device.

Configuration Client removes a node from a network by sending Config Node Reset message. Configuration
Client will update encryption keys used in the mesh network, and the removed node becomes unable to
communicate with other nodes.

introduction

Unprovisioned

Device
/ ~N
reuse disposal

Provisioning Client Provisioning Server

(Provisioner) (Provisoinee)
Provisioning /
Unconfigured
Node

Configuration Client |——— Configuration Server Configuration Server «— | Configuration Client
Configured /

Configuration Node Removal
Mesh Node

Mesh Model communication with other nodes

Figure 1-6 Lifecycle of a node

RO1AN5849EJ0105 Rev.1.05 Page 11 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.10 Optional Features
The following features are defined as optional features.

e Relay feature (refer to subsection 1.10.1)

e Proxy feature (refer to subsection1.10.2)

o Friend feature (refer to subsection 1.10.3)

o Low Power feature (refer to subsection 1.10.3)

It is possible to create various mesh network by enabling each optional features of nodes. Each optional
features are described in the next section.

Proxy Client Relay —> \

\ / \ node

\ Relay Proxy node
Rel d

Relay + Proxy Server \ / \ elay node

/ Relay + Friend
\ Low Power node
/ Relay /

Friend node

=—p GATT bearer path

Low Power
=——p ADV bearer path

Low Power

Figure 1-7 Mesh Network

1.10.1 Relay

The Relay feature is a feature that a node supporting ADV bearer relays received messages. Even if
destination node is out direct radio range of a source node, messages are relayed by other nodes and
spreads throughout a network, then the messages can reach the destination node. A node that relays
message is referred to as a Relay node.

direct radio range

(message originator) / (destination node)

_ 5

\ / Relay
Rela??/\‘

i — ADV bearer path i

Figure 1-8 Relay

RO1AN5849EJ0105 Rev.1.05 Page 12 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.10.2 Proxy
Proxy feature is a feature that a node supporting both GATT bearer and ADV bearer forwards messages
between both bearers.

A node supporting only GATT bearer communicates with a connected peer node only. When such a node
sends and receives messages from / to mesh network, the node establishes a connection with a node that
supports Proxy feature. Messages sent by this node can be forwarded by the proxy node to the ADV bearer
and finally reach the destination node. And messages sent by other nodes are forwarded by GATT bearer of
the Proxy node, and the messages can reach this node. A node that transmits messages between both
GATT bearer and ADV bearer is referred to as a Proxy Server. A node that connects with Proxy Server and
transmits / receives messages over GATT bearer is referred to as a Proxy Client.

Proxy Server has a list to manage Subscription Addresses of Proxy Client, and it is referred to as a Proxy
Filter List. Either whitelist filter or blacklist filter can be set as a Proxy Filter Type. When Proxy Filter Type is
whitelist filter, Proxy Server forwards only messages addressed to the address registered in the list. When
Proxy Filter Type is blacklist filter, Proxy Server does not forward messages addressed to the address
registered in the list.

Proxy Client
- /
/ Proxy Server
Proxy Client

——> GATT bearer path
— ADV bearer path

Figure 1-9 Proxy

RO1AN5849EJ0105 Rev.1.05 Page 13 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

1.10.3 Friendship

Friend feature is a feature that stores incoming messages needed by Low Power node and then forwards
them when Low Power node requests. In general, a node supporting ADV bearer always perform Scan to
receive Advertising packets including messages. Low Power feature is a feature to reduce Scan duty cycle.
A node supporting Low Power feature can reduce power consumption by suspending Scan.

To perform Low Power feature, the node must establish a Friendship with one node supporting Friend
feature. After establishing the friendship, Low Power node can suspend Scan, while Friend node must store
received messages addressed to Low Power node.

Friend node has a list to manage Subscription Addresses of Low Power node, and it is referred to as a
Friend Subscription List. After establishing a Friendship, Friend node stores messages addressed to
Subscription Addresses registered in the list.

Low Power node polls Friend node intermittently if any messages are stored and resumes Scan only within a
polling period. Friend node forwards the stored messages at this timing.

Low Power node
(destination node)

(originator node)

Friend Poll
> /
\ stored messages

Friend node

i —» ADV bearer path i

Figure 1-10 Friendship

RO1AN5849EJ0105 Rev.1.05 Page 14 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2. Mesh Application Overview
This chapter describes the overview of Mesh Application.

2.1 Software Structure
Figure 2-1 shows the structure of software using Mesh Stack.

Mesh Application

Mesh Stack API ——— — Driver APIs —

Bluetooth Mesh Stack

Bluetooth Bearer API

Peripheral
Driver

Bluetooth Bearer (Bearer Platform) Modules

R_BLE API

Bluetooth Low Energy Protocol Stack

MCU

Figure 2-1 Software Architecture

The software using Mesh Stack is composed of the followings:

Mesh Application

The Mesh Application is an application program that performs Bluetooth mesh communication features.
Users are required to understand specification of Mesh Stack API (RM_BLE MESH_XXXX,
RM_MESH_XXXX) and Bluetooth Bearer APl (RM_BLE _MESH BEARER _XXXX) to develop their own
Mesh Applications. Also, sample program of Mesh Application is included in "RA4W1 Group Bluetooth
Mesh sample application" (RO1AN5848).

Bluetooth Mesh Stack

The Bluetooth Mesh Stack (hereinafter referred to as "Mesh Stack") is the software stack that provides
applications with many-to-many wireless communication features which is compliant with the Bluetooth
Mesh Networking specifications. This stack has Mesh Stack API to use mesh network communication
features. Also, Mesh Stack is included in Mesh Module provided as Renesas Flexible Software Package
(FSP).

Bluetooth Bearer (Bearer Platform)

The Bluetooth Bearer is the abstraction layer that provides the Bluetooth Mesh Stack and application
with wrapper functions of Bluetooth Low Energy Protocol Stack. Also, Bluetooth Bearer is included in
Bearer Platform Module provided as Renesas Flexible Software Package (FSP).

RO1AN5849EJ0105 Rev.1.05 Page 15 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

¢ Bluetooth Low Energy Protocol Stack

The Bluetooth Low Energy Protocol Stack (hereinafter referred to as "Bluetooth LE Stack") is the
software that provides upper layers with wireless communication features which is compliant with the
Bluetooth Low Energy specifications. Bluetooth LE stack has R_BLE API to use Bluetooth Low Energy

communication features. Also, Bluetooth LE Stack is included in BLE Module provided as Renesas
Flexible Software Package (FSP).

e Peripheral Driver Modules

Application, Mesh Stack, Bluetooth LE Stack use peripheral functions of microcontroller. Peripheral

drivers that are provided as Renesas Flexible Software Package (FSP) can used for developing
software for RA microcontrollers.

RO1AN5849EJ0105 Rev.1.05 Page 16 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

2.2 File Structure

"RA4W1 Group Bluetooth Mesh sample application"™ (RO1AN5848) includes following sample programs of

Mesh application.

- ekradw1_mesh_client_baremetal: Project for EK-RA4W1 - Client Models
- ekrad4w1_mesh_server_baremetal: Project for EK-RA4W1 - Server Models

- ekradw1_mesh_cli_client_baremetal: Project for EK-RA4W1 - Command Line Interface Client Models

- ekradw1_mesh_cli_server_baremetal: Project for EK-RA4W1 - Command Line Interface Server Models
- ekradw1_mesh_client_freertos: Project for EK-RA4W1 - Client Models using FreeRTOS
- ekradw1_mesh_server_freertos: Project for EK-RA4W1 - Server Models using FreeRTOS

Above programs also includes Mesh Stack, Bluetooth Bearer, Bluetooth LE Stack, and other Modules that

are needed to build the sample program.

Structure of demo project is shown as below. This document describes software indicated in bold. For

details of other Modules, refer to “Renesas Flexible Software Package User’s Manual.

{project}\

+---ra\fsp\lib\

|

+---ra_cfg\

|

+---ra_gen\

|

+---src\

| app _main.c

mesh appl.h
mesh core.c

|
|
| mesh model.c
|

+---app_lib\

|

+---vendor model\

| vendor api.h

| vendor client.c

| vendor server.c

Mesh Stack Library
Bluetooth LE Stack Library
Module Configuration

MCU Pin Configuration, Vector Table

Mesh Sample Program
Mesh Sample Header
Mesh Core Module
Mesh Model Module

Application Library
Vendor Model Header

Vendor Client Module
Vendor Server Module

Regarding how to setup an environment for building sample program, refer to Chapter 2 in "RA4W1 Group

Bluetooth Mesh sample application" (RO1AN5848)

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022

RENESAS

Page 17 of 76

RA4W1 Group

Bluetooth Mesh Development Guide

2.3 Mesh Application

Users is required to develop own Mesh Application for performing wireless communication capability with
Bluetooth Mesh. "RA4W1 Group Bluetooth Mesh sample application" (R01AN5848) includes source code of
sample program that can be used as a reference for developing Mesh Applications.

The sample program of Mesh Application (hereinafter referred to as "Mesh Sample Program”) uses the API
of Mesh Stack and performs Provisioning and basic operations as a mesh node. This section describes the
detail of Mesh Sample Program. Supported features of Mesh Sample Program are shown as below:

e Unprovisioned Device operation:

e Configuration Server operation:
e Generic OnOff Client operation:

e Generic OnOff Server operation:

e Vendor Client operation:
e Vendor Server operation:
e Low Power operation:

e Proxy Server operation:

e |V Update Initiation functionality:

supports both PB-ADV bearer and PB-GATT bearer.
stores Configuration information in Data Flash memory.

sends Generic OnOff Set message when on-board switch is
pushed.

controls on-board LED when Generic OnOff Set message is
received.

sends Vendor Set message with character string input over UART.
outputs character string included in Vendor Set message received.

establishes a Friendship to Friend node and registers Subscription
List with Friend Subscription List.

establish a connection to Proxy Client and forwards messages
over GATT bearer.

monitors sequence number of messages and initiates 1V update
procedure when the sequence number exceeds threshold value.

This sample program includes the following two modules. Those modules placed in ./src folder of Mesh

Sample Program.

. Mesh Core Module

This module performs Provisioning as a Provisioning Server and enables GATT bearer as a Proxy
Server after Provisioning. In addition, this module controls a Friendship as a Low Power Node. For more

details, refer to Subsection 2.3.1.

¢ Mesh Model Module

This module performs operations associated with Generic OnOff models and original Vendor models as
well as Configuration Server model and Health Server model. For more details, refer to Subsection 2.3.2.

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022

Re Page 18 of 76
RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2.3.1 Mesh Core Module

Mesh Core Module included in Mesh Sample Program performs the following operations. This module is
implemented in "mesh_core.c".

e Provisioning process (refer to Section 3.3)
o Proxy feature (refer to Section 3.4)
e Low Power feature (refer to Section 3.5)

e |V Update process

2.3.2 Mesh Model Module

Mesh Model module included in Mesh Sample Program performs the following operations. This module is
implemented in "mesh_model.c".

e Mesh Model Composition (refer to Section 2.3.3)
e Configuration Model (refer to Section 2.3.3.1)

e Generic OnOff Model (refer to Section 2.3.3.3)

e Vendor Model (refer to Section 2.3.3.4)

2.3.3 Mesh Model Composition
This sample program uses the following model.

e Configuration Server model

e Health Server model

e Generic OnOff Server model (enabled when ONOFF_SERVER_MODEL" macro is defined)
e Generic OnOff Client model (enabled when ONOFF_CLIENT_MODEL" macro is defined)

e Vendor Server model (enabled when VENDOR_SERVER_MODEL" macro is defined)

e Vendor Client model (enabled when VENDOR_CLIENT_MODEL" macro is defined)

*These macros have defined as build option.

RO1AN5849EJ0105 Rev.1.05 Page 19 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

Figure 2-2 show the model structure of Mesh Sample Program. Generic OnOff Client model, Generic OnOff
Server model, Vendor Client model, and Vendor Server model as well as Configuration Server model and
Health Server model are located on the Primary element. The explanation of each model is given in the

following sections.

node

element

Vendor Server model
Generic OnOff Server model
Health Server model

Configuration Server model

Server models project

node

element

Vendor Client model
Generic OnOff Client model
Health Server model

Configuration Server model

Client models project

Figure 2-2 Model Composition of Mesh Sample Program

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022

RENESAS

Page 20 of 76

RA4W1 Group

Bluetooth Mesh Development Guide

2.3.3.1 Configuration Model

Configuration model is the model to configure a node behavior. Configuration Server has multiple
configuration states for storing configurations of node, element, and model behavior. These states are
configured by messages from configuration client.

Table 2-1 States of Configuration Model

Model Name

SIG Model ID (16bits) State

Configuration Server

0x0000 Secure Network Beacon
Composition Data
Default TTL

GATT Proxy

Friend

Relay

Model Publication
Subscription List
NetKey List

AppKey List

Model to AppKey List
Node Identity

Key Refresh Phase
Heartbeat Publish
Heartbeat Subscription
Network Transmit
Relay Retransmit
PollTimeout List

Configuration Client

0x0001 -

Table 2-2 Configuration Messages

State Message Name Opcode Direction

Secure Network Beacon Config Beacon Get 0x8009 Client->Server
Config Beacon Set 0x800A Client->Server
Config Beacon Status 0x800B Server->Client

Composition Data Config Composition Data Get 0x8008 Client->Server

Config Composition Data Status 0x02

Server->Client

Default TTL Config Default TTL Get 0x800C Client->Server
Config Default TTL Set 0x800D Client->Server
Config Default TTL Status 0x800E Server->Client
GATT Proxy Config GATT Proxy Get 0x8012 Client->Server
Config GATT Proxy Set 0x8013 Client->Server
Config GATT Proxy Status 0x8014 Server->Client
Friend Config Friend Get 0x800F Client->Server
Config Friend Set 0x8010 Client->Server
Config Friend Status 0x8011 Server->Client
Relay Config Relay Get 0x8026 Client->Server
Relay Retransmit Config Relay Set 0x8027 Client->Server
Config Relay Status 0x8028 Server->Client
Model Publication Config Model Publication Get 0x8018 Client->Server

Config Model Publication Set 0x03

Client->Server

Config Model Publication Virtual Address Set 0x801A Client->Server
Config Model Publication Status 0x8019 Server->Client
Subscription List Config Model Subscription Add 0x801B Client->Server
Config Model Subscription Virtual Address Add 0x8020 Client->Server
Config Model Subscription Delete 0x801C Client->Server
Config Model Subscription Virtual Address Delete | 0x8021 Client->Server
Config Model Subscription Virtual Address 0x8022 Client->Server
Overwrite
Config Model Subscription Overwrite 0x801E Client->Server
Config Model Subscription Delete All 0x801D Client->Server
Config Model Subscription Status 0x801F Server->Client
Config SIG Model Subscription Get 0x8029 Client->Server

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022

RENESAS

Page 21 of 76

RA4W1 Group

Bluetooth Mesh Development Guide

State Message Name Opcode Direction
Config SIG Model Subscription List 0x802A Server->Client
Config Vendor Model Subscription Get 0x802B Client->Server
Config Vendor Model Subscription List 0x802C Server->Client
NetKey List Config NetKey Add 0x8040 Client->Server
Config NetKey Update 0x8045 Client->Server
Config NetKey Delete 0x8041 Client->Server
Config NetKey Status 0x8044 Server->Client
Config NetKey Get 0x8042 Client->Server
Config NetKey List 0x8043 Server->Client
AppKey List Config AppKey Add 0x00 Client->Server
Config AppKey Update 0x01 Client->Server
Config AppKey Delete 0x8000 Client->Server
Config AppKey Status 0x8003 Server->Client
Config AppKey Get 0x8001 Client->Server
Config AppKey List 0x8002 Server->Client
Model to AppKey List Config Model App Bind 0x803D Client->Server
Config Model App Unbind 0x803F Client->Server
Config Model App Status 0x803E Server->Client
Config SIG Model App Get 0x804B Client->Server
Config SIG Model App List 0x804C Server->Client
Config Vendor Model App Get 0x804D Client->Server
Config Vendor Model App List 0x804E Server->Client
Node Identity Config Node Identity Get 0x8046 Client->Server
Config Node Identity Set 0x8047 Client->Server
Config Node Identity Status 0x8048 Server->Client
- Config Node Reset 0x8049 Client->Server
Config Node Reset Status 0x804A Server->Client
Key Refresh Phase Config Key Refresh Phase Get 0x8015 Client->Server
Config Key Refresh Phase Set 0x8016 Client->Server
Config Key Refresh Phase Status 0x8017 Server->Client
Heartbeat Publication Config Heartbeat Publication Get 0x8038 Client->Server
Config Heartbeat Publication Set 0x8039 Client->Server
Config Heartbeat Publication Status 0x06 Server->Client
Heartbeat Subscription Config Heartbeat Subscription Get 0x803A Client->Server
Config Heartbeat Subscription Set 0x803B Client->Server
Config Heartbeat Subscription Status 0x803C Server->Client
Network Transmit Config Network Transmit Get 0x8023 Client->Server
Config Network Transmit Set 0x8024 Client->Server
Config Network Transmit Status 0x8025 Server->Client
PollTimeout List Config Low Power Node PollTimeout Get 0x802D Client->Server
Config Low Power Node PollTimeout Status 0x802E Server->Client

Memory region for storing configuration states are allocated in Mesh Stack. When receiving configuration
message, Mesh Stack updates values of the configuration state automatically. Therefore, application does
not need to take care of the configuration states. Also, application can access values of the Configuration
states by using Mesh Stack API.

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022

RENESAS

Page 22 of 76

RA4W1 Group Bluetooth Mesh Development Guide

2.3.3.2 Health Model

Health model is the model to monitor the physical condition of a node. Health Server has Fault states for
storing physical fault condition of node. These states are updated when fault occurs. In addition, self-testing
of a node can be performed by messages from Health Client. Also, Health Server has Attention Timer state
to activate a physical behavior (e.g., LED blinking, vibrating) for calling attention. This attention state may be
used to indicate which device is performing provisioning procedure, etc.

Table 2-3 States of Health Model

Model Name SIG Model ID (16bits) State

Health Server 0x0002 Current Fault
Registered Fault
Health Period
Attention Timer

Health Client 0x0003 -

Table 2-4 Health Messages

State Message Name Opcode Direction
Current Fault Health Current Status 0x04 Server->Client
Registered Fault Health Fault Get 0x8031 Client->Server
Health Fault Clear 0x802F Client->Server
Health Fault Clear Unacknowledged 0x8030 Client->Server
Health Fault Status 0x05 Server->Client
Health Fault Test 0x8032 Client->Server
Health Fault Test Unacknowledged 0x8033 Client->Server
Health Period Health Period Get 0x8034 Client->Server
Health Period Set 0x8035 Client->Server
Health Period Set Unacknowledged 0x8036 Client->Server
Health Period Status 0x8037 Server->Client
Attention Timer Health Attention Get 0x8004 Client->Server
Health Attention Set 0x8005 Client->Server
Health Attention Set Unacknowledged 0x8006 Client->Server
Health Attention Status 0x8007 Server->Client

Memory region for storing Health states is allocated in Mesh Stack.

RO1AN5849EJ0105 Rev.1.05 Page 23 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

2.3.3.3 Generic OnOff Model

Generic OnOff Model is a model that is defined by Bluetooth SIG. Generic OnOff Server has a Generic
OnOff state that stores value of either On or Off. This state is configured by messages from Generic OnOff

Client.

Table 2-5 State of Generic OnOff Model

Model Name

SIG Model ID (16bits)

State

Generic OnOff Server

0x1000

Generic OnOff (0x00: Off, 0x01: On)

Generic OnOff Client

0x1001

Application must allocate memory for storing Generic OnOff state. Mesh Stack notifies received Generic
OnOff message by callback function. Application must handle Generic OnOff state in accordance with
Generic OnOff message notified by the callback function.

Table 2-6 Generic OnOff Messages

State Message Name Opcode Direction

Generic OnOff Generic OnOff Get 0x8201 Client->Server
Generic OnOff Set 0x8202 Client->Server
Generic OnOff Set Unacknowledged 0x8203 Client->Server
Generic OnOff Status 0x8204 Server->Client

2.3.3.4 Vendor Model

User can define their own model as Vendor Model. This section describes Vendor Model implemented in
Mesh Sample Program. Vendor Server implemented in Mesh sample program has a vendor state for storing
any variable-length data. This state is configured by vendor client.

Table 2-7 State of Vendor Model

Model Name

Vendor Model ID (32bits)

State

Vendor Server

0x00010036 (default value)

Vendor state (any variable-length data)

Vendor Client

0x00020036 (default value)

Table 2-8 Vendor Messages

State Message Name Opcode Direction

Vendor Vendor Get 0xC10036 (default value) Client->Server
Vendor Set 0xC20036 (default value) Client->Server
Vendor Set Unacknowledged 0xC30036 (default value) Client->Server
Vendor OnOff Status 0xC40036 (default value) Server->Client

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022

RENESAS

Page 24 of 76

RA4W1 Group

Bluetooth Mesh Development Guide

2.4 Bluetooth Mesh Stack

Bluetooth Mesh Stack provides applications with many-to-many wireless communication features which is
compliant with the Bluetooth Mesh Networking specifications. Flexible Software Package provides the Mesh
stack as static library. And you can use the Mesh features via Bluetooth Mesh Stack API. Figure 2-3 shows

the internal architecture of Bluetooth Mesh Stack.

Mesh Stack API

Mesh Models

Generic models

Time and Scenes models

Lighting models

Sensors models

‘ Configuration models Health model
Mesh Core

[Access layer |

[Upper Transport layer | Provisioning

[Lower Transport layer | layer

[Network layer |

{

Bearer layer

Figure 2-3 Internal Architecture of Bluetooth Mesh Stack

The Bluetooth Mesh Stack is composed of the following two blocks:

. Mesh Core

Mesh Core block is composed of modules corresponding with each layer defined by Mesh Profile
Specification and provides application with the features to perform Provisioning process and mesh
networking operations. Regarding the Mesh Profile Specification, visit the Specifications List and refer to

Mesh Profile Specification document.

° Mesh Models

Mesh Models block is composed of modules corresponding with each model defined by Mesh Model
Specification and provides application with the features to support Mesh models that defines basic
operations on a mesh network. Regarding the Mesh Model Specification, visit the Specifications List and

refer to Mesh Model Specification document.

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022 RENESAS

Page 25 of 76

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

RA4W1 Group Bluetooth Mesh Development Guide

Mesh Stack consists of modules to implement protocol defined by Bluetooth Mesh Networking
Specifications. Mesh Stack API has the following function prefixes corresponding to each module. To make
Mesh Application, it is necessary to use Mesh Stack APIs according to your use case. Regarding the
specification of Mesh Stack API, refer to “Renesas Flexible Software Package User’'s Manuar’.

Table 2-9 Mesh stack APIs

Module

Function Prefix

Mesh Model

Generic OnOff

RM_MESH_GENERIC_ON_OFF_*()

Generic Level

RM_MESH_GENERIC_LEVEL_*()

Generic Default Transition Time

RM_MESH_GENERIC_DTT_*(),

Generic Power OnOff

RM_MESH_GENERIC_POO_*()

Generic Power Level

RM_MESH_GENERIC_PL_*()

Generic Battery

RM_MESH_GENERIC_BATTERY_*()

Generic Location

RM_MESH_GENERIC_LOC_*()

Generic Property

RM_MESH_GENERIC_PROP_*()

Sensor RM_MESH_SENSOR *()
Time RM_MESH _TIME_*()
Scene RM_MESH_SCENE_*()
Scheduler RM_MESH SCHEDULER_*()
Light Lightness RM_MESH_LIGHT_LIGHTNESS_*()
Light CTL RM_MESH LIGHT _CTL_*()
Light HSL RM_MESH _LIGHT _HSL *()
Light xyL RM_MESH LIGHT XYL_*()
Light LC RM_MESH LIGHT LC _*()
Configuration RM_MESH_CONFIG *()
Health RM_MESH HEALTH *()
Mesh Core

Access Layer

RM_BLE_MESH_ACCESS_*()

Transport Layer

RM_BLE_MESH_UPPER_TRANS_*()

Lower Transport Layer

RM_BLE_MESH_LOWER_TRANS_*()

Network Layer

RM_BLE_MESH_NETWORK_*()

Bearer Layer

RM_BLE_MESH_BEARER_*()

Provisioning Layer

RM_BLE_MESH_PROVISION_*()

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022

RENESAS

Page 26 of 76

RA4W1 Group Bluetooth Mesh Development Guide

2.5 Bluetooth Bearer

Bluetooth Bearer provides Mesh Stack and applications with wrapper functions of Bluetooth LE Stack.
Flexible Software Package provides Bluetooth bearer as static library. Bluetooth LE Stack provides upper
layers with wireless communication features which is compliant with the Bluetooth Low Energy
specifications. Flexible Software Package also provides Bluetooth LE stack as static library. Figure 2-4
shows the internal architecture of Bluetooth Bearer. Bearer functions for message transmission and
reception are used by Mesh Stack. Bearer functions for connection control must be used by Mesh
Application as necessary.

Mesh Application

Bluetooth Mesh Stack

4 Bluetooth Bearer API

Bluetooth Bearer

h 4 h 4

ADV bearer and GATT bearer GATT Bearer Connection
Transmission and Reception functions Control functions

R_BLE API

Bluetooth Low Energy Protocol Stack

Figure 2-4 Bluetooth Bearer Operations

Regarding the specification of Bluetooth bearer APl and R_BLE APIs, refer to “Renesas Flexible Software
Package User’s Manuaf’.

2.5.1 Bearer Functions for Message Transmission and Reception

The Mesh stack provides message sending and receiving functions for each model with the prefixes shown
in Table 2-9. You need to call RM_MESH _BEARER _PLATFORM_Setup () API before using the message
send / receive function. The Mesh stack uses these messages send and receive functions to send and
receive provisioning PDUs and Mesh messages. For details on the message sending / receiving function,
refer to the “Renesas Flexible Software Package User ’s Manual’.

RO1AN5849EJ0105 Rev.1.05 Page 27 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

2.5.2 Bearer Functions for Connection Control

Mesh Stack manages neither connection status nor GATT service. Therefore, to use GATT bearer, Mesh
Application must control a connection and GATT services by using the bearer functions for connection
control directly. Table 2-10 shows the bearer functions for connection control. Those functions provide the
functionalities for service discovery and notification permission as well as connection establishment and

disconnection.

Table 2-10 Bearer Functions for Connection Control

Function Routine GATT Server | GATT Client
(Peripheral) (Central)
RM_MESH_BEARER_PLATFORM_CallbackSet() Register GATT used used
Interface Callback
RM_MESH_BEARER_PLATFORM_SetGattMode() Set GATT Bearer used used
Mode NOTE1
RM_MESH_BEARER_PLATFORM_GetGattMode() Get GATT Bearer used used
Mode NOTE1
RM_MESH_BEARER_PLATFORM_Disconnect() Disconnect used used
RM_MESH_BEARER_PLATFORM_SetScanResponseData() Set Scan Response | used not used
Data
RM_MESH_BEARER_PLATFORM_ScanGattBearer() Scan Connectable not used used
Device
RM_MESH_BEARER_PLATFORM_Connect() Create Connection not used used
RM_MESH_BEARER_PLATFORM_DiscoverService() Perform Service not used used
Discovery
RM_MESH_BEARER_PLATFORM_ConfigureNotification() Configure Mesh not used used
GATT Services
Notification
Permission NOTE2

NOTE1: GATT Bearer Mode is either Provisioning Mode or Proxy Mode.

NOTEZ2: GATT Server configures MTU size to Mesh Stack when Notification is enabled. When changing
MTU size, GATT Client has to perform MTU Exchange procedure before enabling Notification.

Regarding how to change MTU size, refer to Section 7.4 in "RA4W1 Group Bluetooth Low Energy

Application Developer's Guide"(RO1AN5653).

RO1AN5849EJ0105 Rev.1.05

Dec. 27, 2022 RENESAS

Page 28 of 76

RA4W1 Group Bluetooth Mesh Development Guide

2.5.3 Mesh GATT Services

Mesh GATT Services are used for mesh message transmission and reception over GATT bearer.
Composition of the Mesh GATT Services are listed in Table 2-11. Mesh Provisioning Service is used for
Provisioning over PB-GATT bearer, and Mesh Proxy Service is used for Proxy connection after Provisioning.
Which one of Mesh GATT Services are exposed is switched by

RM_MESH_BEARER _PLATFORM_SetGattMode() APl. GATT Database that defines Mesh GATT Service is
held in Bluetooth Bearer.

Table 2-11 Composition of the Mesh GATT Services

Service Characteristic (UUID) Property Value

(UUID)

Mesh Mesh Provisioning Data In Write Provisioning PDU from a Provisioning Client to a

Provisioning | Characteristic (0x2ADB) Without Provisioning Server

Service Response

(0x1827) Mesh Provisioning Data Out | Notify Provisioning PDU from a Provisioning Server to a
Characteristic (0x2ADC) Provisioning Client.

Mesh Proxy Mesh Proxy Data In Write Proxy PDU message containing Network PDU, mesh

Service Characteristic (0x2ADD) Without beacons, or proxy configuration from a Proxy Client to

(0x1828) Response a Proxy Server
Mesh Proxy Data Out Notify Proxy PDU message containing Network PDU, mesh
Characteristic (0x2ADE) beacon, or proxy configuration from a Proxy Server to

a Proxy Client.

RO1AN5849EJ0105 Rev.1.05 Page 29 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2.5.4 ADV Bearer Operation
When Mesh Application calls RM_MESH _BEARER_PLATFORM_Setup(), Bluetooth Bearer registers
message transmission and reception functions for ADV Bearer with Mesh Stack and starts Scan operation.

Advertising packets received by Bluetooth LE Stack are notified to Mesh Stack. Also, Bluetooth LE Stack
transmits Advertising packets when Mesh Stack calls the message transmission function.

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

ADV Bearer Registration

RM_MESH_BEARER_PLATFORM_Setup()

>

RM_BLE_MESH BEARER AddBearer()
mpy
R_BLE_GAP_StartScan()
_ BLE_GAP_EVENT_SCAN_ON H
ADV Bearer Reception
BLE_GAP_EVENT_ADV_REPT_IND
my [
ADV Bearer Transmission
[m]

v

| R BLE_GAP_StartAdv()

>

BLE_GAP_EVENT ADV_ON

}--]

R BLE_GAP_StopAdv()

BLE_GAP_EVENT ADV_OFF

Figure 2-5 ADV Bearer Operation

RO1AN5849EJ0105 Rev.1.05 Page 30 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2.5.5 GATT Bearer Operation

When a connection is established and enabling Notification completes, Bluetooth Bearer registers message
transmission and reception functions for GATT Bearer with Mesh Stack.

In the case of node behaves as GATT Server, Bluetooth LE Stack transmits message by Notification when

Mesh Stack calls the message transmission function. Also, message transmitted by Write Without Response
is notified to Mesh Stack.

In the case of node behaves as GATT Client, Bluetooth LE Stack transmits message by Write Without
Response when Mesh Stack calls the message transmission function. Also, message transmitted by
Notification is notified to Mesh Stack.

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

GATT Bearer Addition

BLE_GAP_EVENT_CONN_IND

BLEBRR GATT_IFACE_UP event

L

[GATT Server] BLE_GATTS_EVENT WRITE_RSP_COMP
[GATT Clientl BLE GATTC EVENT CHAR WRITE RSP

E (enable Notification)

<
<

RM_BLE_MESH_BEARER_AddBearer()
>
BLEBRR GATT_IFACE_ENABLE event

14

GATT Bearer Communication (GATT Server - GATT Client)

[GATT Server] i
[,
'H R BLE_GATTS_Notification()
[GATT Client]
BLE_GATTC_EVENT HDL_VAL_NTF
m)y [
GATT Bearer Communication (GATT Client > GATT Server)
[GATT Client]
] >
'H R BLE_GATTC_WriteCharWithoutRsp()
[GATT Server]

BLE_GATTS_EVENT_DB_ACCESS_IND

GATT Bearer Removal

[GATT Server] BLE_GATTS_EVENT WRITE_RSP_COMP
[GATT Client] BLE GATTC EVENT CHAR WRITE RSP
| (disable Notification)

<
<

BLEBRR GATT_IFACE_DISABLE event

g

RM_BLE_MESH BEARER RemoveBearer()

LEJ‘ i BLE_GAP_EVENT_DISCONN_IND
BLEBRR_GATT_IFACE_DOWN event !:I‘
ITI. 1
Figure 2-6 GATT Bearer Operation
RO1AN5849EJ0105 Rev.1.05 Page 31 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

2.6 MCU Peripheral Functions
Mesh Sample Program uses some RA4W1 peripheral functions listed in Table 2-12.

Table 2-12 RA4W1 Peripheral Functions used

RA4W1 Peripherals FSP provided Software using Peripherals
Peripheral Driver

1/0 Ports r_ioport Module Mesh Sample Program

- P106, P402, and P404: when EK-RA4\W1 is used r_icu Module
Interrupt Controller Unit (ICU)

- IRQ4

Interrupt Controller Unit (ICU) r_icu Module Bluetooth LE Stack

- BLEIRQ

Serial Communication Interface (SCI) r_sci_uart Module Mesh Sample Program
- SCl4

General PWM Timer (GPT) r_gpt Module Mesh Sample Program
- GPTO0: Bluetooth LE Stack use exclusively Mesh Stack

- GPT1: Mesh Stack and Bluetooth Bearer share Bluetooth Bearer

- GPT2: Mesh Sample Program use Bluetooth LE Stack

Low Power Modes (LPM) r_lpm Module Mesh Sample Program
Data Flash memory (FLASH) r_flash_Ip Module Mesh Stack
- Block 0 to 5

e /O Ports and Interrupt Controller Unit (ICU)

Mesh Sample Program uses r_ioport Module and r_icu Module to use 1/O Ports for the following
processing.

e LED Control on development board

e Switch Pushing Detection on development board

e Interrupt Controller Unit (ICU)

Bluetooth LE Stack uses r_icu Module to detect RF interruption.

e Serial Communication Interface (SCI)

Mesh Sample Program uses r_sci_uart Module to output and input console over UART.

RO1AN5849EJ0105 Rev.1.05 Page 32 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

General PWM Timer (GPT)
Bluetooth LE Stack of BLE Module uses GPTO exclusively.

Mesh Stack monitors 96 hours that is minimum duration of IV Update Procedure by using GPT1.

Bluetooth Bearer uses GPT1 for the following processing.

» Advertising Transmission Control for ADV Bearer

Mesh Sample Program uses GPT2 for the following processing.
» LED Blinking on development board

» Avoiding Chattering of Switch on development board

» MCU Reset Delay after receiving Config Node Reset
>

Completion of IV Update Procedure

Low Power Modes (LPM)

Mesh Sample Program uses r_Ipm Module to enable Low Power Consumption function of MCU.

Data Flash memory (FLASH)

Data Flash driver to use Data Flash memory is registered by RM_BLE _MESH _Open() APl to Mesh
Stack. This driver accesses Data Flash memory by using r_flash_Ip Module. The Mesh stack uses Data
flash from Block 0 to Storage/Block number property which specified by rm_ble_mesh module
Storage/Block Number property. Therefore, rm_ble_mesh module Common/Data Flash Block for
Security Data property and Common/Device Specific Data Flash Block property should be configured
avoiding the region used by Storage/Block Number property.

4010 0000h Block0
Block1
Block2
Block3 Storage/Block Number Property
Block4
Block5
Block6
4010 1FFFh Block7

Figure 2-7 Data Flash memory region used

RO1AN5849EJ0105 Rev.1.05 Page 33 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

Mesh Stack stores the following information to Data Flash memory.

Information exchanged during Provisioning
mesh addresses

encryption keys

Information exchanged during Configuration
model composition

model configuration

IV index and associated state

e Sequence Number

These information will be changed very rarely except for Sequence Number. The sequence number is
incremented for each new network message transmission. If it is written for each increment, the flash
memory reaches the write cycle limit in a short span of time. Specify the interval for writing the sequence
number to the data flash by Network Sequence Number Block Size property of the rm_ble_mesh module to
reduce the frequency of writing data flash.

RO1AN5849EJ0105 Rev.1.05 Page 34 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

2.7 Mesh Sample Program Configuration

Mesh Sample Program has multiple compilation switches to configure its operation. Compilation switches are

implemented in "mesh_appl.h".

#define IV_UPDATE_INITIATION_EN (1)

#define LOW_POWER_FEATURE_EN
#tdefine CONSOLE_OUT_EN

#define ANSI_CSI_EN

#define SCI_RCV_STRING_EN
#define SCI_RCV_STRING_BUFFER_LEN

(@)
(1)
(1)
(1)
(ex100)

o Enabling IV Update Initiation Processing

IV Update Initiation processing is enabled by setting the IV_UPDATE_INITIATION_EN macro to (1).
This processing monitors sequence number of incoming and outgoing message and initiates IV Update
procedure when the sequence number is greater than or equal to threshold. It prevents sequence
number of own node or other nodes from exhausting.

Configuration Macro

Configuration Value

Description

IV_UPDATE_INITIATION_EN 0

Disable IV Update Initiation processing

1

Enable IV Update Initiation processing

Enabling Low Power Feature

Low Power feature is enabled by setting the LOW_POWER_FEATURE _EN macro to (1). After
Provisioning, Mesh Sample Program establishes a Friendship with Friend node and works as a Low

Power node.

Configuration Macro Configuration Value

Description

LOW_POWER_FEATURE_EN | 0

Disable Transition to Low Power Node

1

Enable Transition to Low Power Node

Console Output Configuration

Console Output is enabled by setting the CONSOLE_OUT_EN macro to (1). It is possible to trace API

called by Mesh Sample Program and events returned by Mesh Stack on terminal emulator.

Configuration Macro

Configuration Value

Description

CONSOLE_OUT_EN

0

Disable Console Log Output

1

Enable Console Log Output

e ANSI CSI Console Output Configuration

Output ANSI CSI (Control Sequence Introducer) to console is enabled by setting the ANSI_CSI_EN
macro to (1). Mesh Sample Program colors some log. In the case that serial terminal emulator you use
does not support ANSI CSI, set the ANSI_CSI_EN macro to (0).

Configuration Macro

Configuration Value

Description

ANSI_CSI_EN

0

Disable ANSI CSI Output to Console Log

1

Enable ANSI CSI Output to Console Log

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022

Re Page 35 of 76
RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

e Console String Reception Configuration

String reception from console is enabled by setting the SCI_RCV_STRING_EN macro to (1). String
received is notified by a callback function.

Configuration Macro Configuration Value | Description

SCI_RCV_STRING_EN 0 Disable String Reception from Console
1 Enable String Reception from Console

SCI_RCV_STRING_BUFFER_LEN 0x0001 to OXFFFF String Reception Buffer Size

Mesh Sample Program has setting macros to configure Provisioning operation. Setting macros are
implemented in "mesh_core.c".

#define CORE_PROV_BEACON_OOB_INFO ()
#define CORE_PROV_BEACON_URI_INFO {.payload = "\x17//www.example.com", .length = 18}

e OOB Information

OOB Information should be set to CORE_PROV_STATIC_OOBINFO macro. OOB Information is delivered
by Unprovisioned Device Beacon. Multiple OOB Information can be set. When URI and Barcode are
set, (PROV_0OB_TYPE_URI | PROV_OOB_TYPE_BARCODE) should be set.

Configuration Macro Configuration Value Description

CORE_PROV_BEACON_OOB_INFO | PROV_0OB_TYPE_OTHER Other
PROV_00B_TYPE_URI URI
PROV_OOB_TYPE_2DMRC 2D machine-readable code
PROV_OOB_TYPE_BARCODE Bar code
PROV_OOB_TYPE_NFC Near Field Communication (NFC)
PROV_OOB_TYPE_NUMBER Number
PROV_00B_TYPE_STRING String
PROV_00B_TYPE_ONBOX On box
PROV_OOB_TYPE_INSIDEBOX Inside box
PROV_OOB_TYPE_ONPIECEOFPAPER On piece of paper
PROV_OOB_TYPE_INSIDEMANUAL Inside manual
PROV_OOB_TYPE_ONDEVICE On device

¢ Encoded URI Information

When PROV_OOB_TYPE_URI is set to CORE_PROV_BEACON_OOB_INFO macro described above, Encoded
URI Information must be set to CORE_PROV_BEACON_URI_INFO macro. Encoded URI Information will be
delivered with <<URI>> of AD Type and Hash value of Encoded URI Information will be delivered with
Unprovisioned Device Beacon.

Configuration Macro Configuration Description
Value

CORE_PROV_BEACON_URI_INFO max.29 octets Encoded URI
URI Scheme must be encoded with "URI Scheme Name String
Mapping" defined in Assigned Numbers of Bluetooth SIG

RO1AN5849EJ0105 Rev.1.05 Page 36 of 76
Dec. 27, 2022 RENESAS

https://www.bluetooth.com/specifications/assigned-numbers/

RA4W1 Group Bluetooth Mesh Development Guide

2.8 Bluetooth Bearer Configuration

The following are advertising, scan, and connection parameters performed by Bluetooth bearer. These
parameters cannot be changed by the user application except for the device address type.

o Device Address Type Configuration

Device Address Type property used by Bluetooth Bearer can be configured by
rm_mesh_bearer_platform module.

Property Configuration Value Description
BLEBRR_VS_ADDR_TYPE 0 Public Device Address
1 Random Device Address

e GATT Bearer Connectable Advertising Configuration

Parameter Value

Advertising Type Connectable and Scannable Undirected Legacy
Advertising

Advertising Interval 100msec

Channel Map Ch37, 38, 39

Filter Policy Process Scan Requests and Connection Requests
from All Devices

Advertising Data length 31 bytes

o ADV Bearer Scan Configuration

Parameter Value
Scan type Passive
Scan interval 5msec
Filter Policy None
Duplicate filter None

e GATT Bearer GATT Client Connection Configuration

Parameter Value
Connection Interval 80msec
Peripheral latency 0
Supervision timeout 9.5sec
RO1AN5849EJ0105 Rev.1.05 Page 37 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

3. Application Development

This chapter describes how to develop an application using Bluetooth Mesh Stack while referring to the
implementation of “Mesh Sample Program” (RO1AN5847). Figure 3-1 shows the sequence chart of Mesh

Sample Program.

Mesh Sample Program

BLE Protocol Stack, Bluetooth Bearer
Wrapper, and Mesh Stack Initialization

Mesh Node, Element, and Model Configuration

GATT Interface Callback Registration

Provisioner device

PB-GATT Bearer Connection Establishment
or PB-ADV Link Establishment

Provisioning Process

Saving Provisioning Data to non-volatile storage

or PB-ADV Link Close

PB-GATT Bearer Connection Termination

Configuration Client node

Vendor message communication

| Saving Configuration Information to non-wlatile storage

opt [Proxy feature is enabled]

Proxy Client node

Proxy Connection Establishment

D]

opt [Low Power feature is enabled]

‘ Friend node |

Friendship is established

Update Friend Subscription List

Generic OnOff Server model nodes

Generic OnOff message communication

Vendor Client model nodes

Vendor message communication

Figure 3-1 Sequence Chart of Mesh Sample Program

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022 RENESAS

Page 38 of 76

RA4W1 Group Bluetooth Mesh Development Guide

3.1 Main Routine

This section describes processing that should be implemented in main routine of user application. In the
Mesh sample program given as an example, these processes are implemented in app_main.c.

e Main Routine (app_main.c)

The application must initialize the Bluetooth LE stack and Bluetooth bearer. These initialization processes
are performed by the Bluetooth LE stack scheduler. In the mesh sample program in the bearmetal
environment, the R_BLE_Execute() API of the scheduler API is repeatedly called in the while infinite loop.
The mesh sample program in the FreeRTOS environment creates a task that repeatedly called the scheduler
API. The completion of initialization is notified to the callback function described later in this section.

void app_main(void)

API_RESULT retval;
/* Initialize BLE Protocol Stack */
R_BLE_Open();

#if (BSP_CFG_RTOS == 2)
/* Create Semaphore */
g_semaphore = xSemaphoreCreateBinary();

FreeRTOS case.
/* Get Current Task handle */

g ble core_task = xTaskGetCurrentTaskHandle(); | Create task for periodically calling
R _BLE Execute AP!I.

/* Create Execute Task */
xTaskCreate(execute_task_entry, "execute_ task", 1280, &g ble_core_task,
4, &g _exe_task);
#endif /* (BSP_CFG_RTOS == 2) */

/* Initialize underlying BLE Protocol Stack to use as a Mesh Bearer */
retval = RM_MESH_BEARER_PLATFORM_Open(&g_rm_mesh_bearer_platformo_ctrl,
&g_rm_mesh_bearer_platformo_cfg);

<Continue to next page>

RO1AN5849EJ0105 Rev.1.05 Page 39 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

<Continue from previous page>

while (1)
{

/* When this BLE application works on the FreeRTOS */

#if (BSP_CFG_RTOS == 2)
if(0 !'= R_BLE_IsTaskFree())

{
vTaskSuspend(NULL); FreeRTOS case.
} If there is a task to be executed in the scheduler, transfer to
else task for periodically calling R_BLE_Execute API.
{
xSemaphoreGive(g_semaphore);
}

#telse /* (BSP_CFG_RTOS == 2) */
/* Process BLE Event */
R_BLE_Execute(); periodically calling R_BLE_Execute API.

#endif /* (BSP_CFG_RTOS == 2) */

Baremetal case.

#if (BSP_CFG_RTOS == 2)
void execute_task_entry(void *pvParameters)

{
FSP_PARAMETER_NOT_USED(pvParameters);
while(1)
{
xSemaphoreTake(g_semaphore, portMAX_DELAY);
while(® == R_BLE_IsTaskFree()) FreeRTOS case.
R_BLE_Execute();
periodically calling R_BLE_Execute API.
vTaskResume(g_ble_core_task);
}
}

#endif /* (BSP_CFG_RTOS == 2) */

RO1AN5849EJ0105 Rev.1.05 Page 40 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

e Callback Function of Bluetooth Bearer Initialization Completion

The application must implement a callback function that receives Bluetooth bearer initialization complete
notification mentioned in previous page. In the Mesh sample program, the callback function is implemented
in the blebrr_init_cb function of app_main.c. In this callback function, the Mesh stack itself is initialized and
the Bluetooth bearer is registered to the Mesh stack by calling RM_BLE Mesh_Open API and
RM_MESH BEARER PLATFORM_Setup API. After these initializations, the Mesh application can be
started. In the Mesh sample program given as an example, these processes are implemented as following.
The mesh_model_config function and mesh_core_setup functions are explained in the following sections.

static void blebrr_init_cb(st_ble_dev_addr_t * own_addr)

{
/* Initialize Mesh Stack */
RM_BLE_MESH_Open(&g_ble _mesho_ctrl, &g ble mesho_cfg);
/* Registers ADV Bearer with Mesh Stack and Start Scan */
RM_MESH_BEARER_PLATFORM_Setup(&g_ble_mesh_bearer_platformo_ctrl);
/* Start Mesh Application */ Node configuration.
mesh_model config(&gs_mesh_model callbacks);
mesh_core_setup(); Start beaconing.
¥

e Mesh Stack Termination

When Mesh Stack is no longer needed, Mesh Stack can be terminated by RM_BLE MESH_Close().

If Light LC Server Model is used, Light LC Server Model is terminated by
RM_MESH_LIGHT _LC SRV Close(). Health Server Model is terminated by

RM_MESH _HEALTH_SERVER Close().Mesh Stack is terminated by RM_BLE MESH_ Close(). Resources
used by Bluetooth Bearer are freed by RM_MESH BEARER PLATFORM_Closeg().

When Bluetooth LE Stack is no longer needed, Bluetooth LE Stack can be terminated by R_BLE_Close().

/* Deinitialize Light LC Server Model, if it was initialized */
RM_MESH_LIGHT_LC_SRV_Close(&g_rm_mesh_light lc_srve_ctrl);

/* Deinitialize Health Server Model */
RM_MESH_HEALTH_SERVER_Close(&g_rm_mesh_health_srve_ctrl);

/* Terminate Mesh Stack */
RM_BLE_MESH_Close(&g_rm_ble_mesho_ctrl);

/* Free the resources allocated by Bluetooth Bearer */
RM_MESH_BEARER_PLATFORM_Close(&g_rm_mesh_bearer_platformo_ctrl);

/* Terminate Bluetooth LE Protocol Stack */
R_BLE_Close();

RO1AN5849EJ0105 Rev.1.05 Page 41 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group

Bluetooth Mesh Development Guide

3.2 Node Configuration

The application needs to set up node configurations that include elements and models. This configuration
depends on the user scenario. In the Mesh sample program, the node configuration is set by the
mesh_model_config function implemented in mesh_model.c as follows.

Register foundation model.

&g rm_ble mesh_access@_cfg);

Register models used in application.

Initialize states referred in application.

API_RESULT mesh_model_config(const mesh_model callbacks_t * callbacks)
{
API_RESULT retval;
/* Create Node *//* Register Element */
retval = g _rm_ble_mesh_access@.p_api->open(&g_rm _ble mesh_access@ _ctrl,
retval = mesh_foundation_model_register();
retval = mesh_application_model_register();
retval = mesh_application_model states_init();
}

RO1AN5849EJ0105 Rev.1.05
Dec. 27, 2022 RENESAS

Page 42 of 76

RA4W1 Group Bluetooth Mesh Development Guide

3.3 Provisioning

After the node configuration is complete, the application should perform provisioning procedure as a
provisioning server and receive provisioning data from provisioning client to join the network. The
provisioning process of the Mesh sample program is implemented in mesh_core.c as follows.

3.3.1 Provisioning Server

(1) Registration of Provisioning Capabilities and Provisioning Callback Function (mesh_core.c)

In mesh_core_setup function of mesh_core.c, register a callback function for handling provisioning
event and starting broadcast beacons when the device has not been provisioned. The callback function
that implements provisioning event handling is specified in the Provision Callback property of the
rm_ble_mesh_provision module in FSP configurator. mesh_core_setup function also implements the
processing when the device has been provisioned. See section 3.4 for the implementation of this part.

API_RESULT mesh_core_setup(void)
{
API_RESULT retval = API_SUCCESS;
retval = RM_MESH_BEARER_PLATFORM_CallbackSet(&g_rm_mesh_bearer_platform@ ctrl,
mesh_core_gatt_iface_cb);
/* Check if Provisioning is not complete */
if (API_SUCCESS != mesh_core_get primary_unicast_address(&addr))
{
Register callback function for processing
. oL . provisioning event.
/* Register Provisioning capabilities */
retval = (API_RESULT) RM_BLE_MESH_PROVISION_Open(
&g_rm_ble_mesh_provision@_ctrl,
&g _rm_ble_mesh_provision@_cfg);
if ((FSP_SUCCESS == retval) || (FSP_ERR_ALREADY OPEN == retval))
{ Specify provisioning attribute and start
broadcasting beacons
/* Configure as Unprovisioned Device (Provisioning Server) */
retval = mesh_core_prov_setup(RM_BLE MESH PROVISION_ROLE DEVICE,
RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV |
RM_BLE _MESH_PROVISION_BEARER_TYPE_GATT);
}
}
else
{ .
See section 3.4.
/* Configure as a Proxy Server and Start Connectable Advertising */
mesh_core_proxy_setup ();
mesh_core_proxy_start(RM_BLE_MESH_NETWORK_GATT_PROXY_ADV_MODE_NET_ID);
}
}
RO1AN5849EJ0105 Rev.1.05 Page 43 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

(2) Start of Provisioning (mesh_core.c)

In mesh_core_prov_setup function of mesh_core.c, starts beacon transmission based on the attribute
specified by the argument.

static API_RESULT mesh_core prov_setup(rm_ble mesh_provision role t role,
rm_ble_mesh_provision_bearer_type_t brr)
{

API_RESULT retval;

......... When PB-GATT use as provisioning
if (RM_BLE_MESH_PROVISION_BEARER_TYPE_GATT & brr) | bearer.

{

RM_MESH_BEARER_PLATFORM_SetGattMode(&g_rm_mesh_bearer_platformo_ctrl,
RM_MESH_BEARER_PLATFORM_GATT_MODE_PROVISION);

retval = (API_RESULT)RM_BLE_MESH_PROVISION_Setup Configure provisioning parameters.
(

&g_rm_ble_mesh_provision@_ctrl,
role,

info,
CORE_PROV_SETUP_TIMEOUT_SECS

)5

if (API_SUCCESS == retval)
{

if ((RM_BLE_MESH_PROVISION_ROLE_DEVICE == role) &&
(RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV & brr))
{

mesh_core_prov_bind(RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV,
&gs_prov_device);
} Start broadcasting beacon.

RO1AN5849EJ0105 Rev.1.05 Page 44 of 76
Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

(3) Provisioning Callback Function (mesh_core.c)

Implement a callback function to receive Provisioning events. Provisioning Data provided from a
Provisioning Client is required to be registered with Mesh Stack by setProvisioningData API of
rm_ble_mesh_access module in RM_BLE MESH PROVISION_EVENT _TYPE _PROVDATA_INFO

event.

void mesh_core_prov_cb(rm_ble _mesh_provision_callback_args_t * p_args)

switch (p_args->event_type)

{
case RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVDATA_INFO:
rdata = (rm_ble_mesh_provision_data_t *)(p_args->event_data.payload);
/* Provide Provisioning Data to Access Layer */
retval = g rm_ble mesh_access@.p_api->
setProvisioningData(&g _rm_ble_mesh_access@_ctrl, rdata);

break;

}

return;

(4) Cancellation of provisioning (app_main.c)

When provisioning is completed, 11 bytes of magic number indicating that provisioning has been
completed is saved from top of the data flash (address 0x40100000). The magic number can be deleted
at any time using reset API of the rm_ble_mesh_access module and the transmission of the un-
provisioned device beacon can be resumed after rebooting a program. Sample program included with
"RA4W1 Group Bluetooth Mesh sample application" (RO1AN5848), the magic number will be erased
when SW1 mounted on EK-RA4W1 is pressed and rebooted.

static void platform_reboot_timer_cb(void)
{
API_RESULT retval;
retval = g rm_ble mesh_access@.p_api->reset(&g_rm_ble_mesh_access@_ctrl);
}
RO1AN5849EJ0105 Rev.1.05 Page 45 of 76

Dec. 27, 2022 RENESAS

RA4W1 Group Bluetooth Mesh Development Guide

3.3.2 Provisioning Sequence
(1) Provisioning Setup

This sample program supports both PB-ADV bearer and PB-GATT bearer and transmits Unprovisioned
Device beacon for PB-ADV bearer and connectable advertising for PB-GATT bearer alternately.

Unprovisioned Device

‘ Mesh Application Mesh Stack Bluetooth Bearer

Provisioning Setup

RM_MESH_BEARER PLATFORM_CallbackSet()

RM_MESH_BEARER PLATFORM_SetGattMode()

RM_BLE_MESH_PROVISION_Open()
RM_BLE_MESH_P ROVISION_SL'étup()
"1

RM_BLE_MESH_PROVISION_Bind()

loop

|

s
o >
i |_| Unprovisioned Device Beacon
! i

> Connectable Advertising
for PB-GATT

v

Figure 3-2 Provisioning Setup

(2) Session Establishment over PB-ADV

To perform Provisioning Process over PB-ADV, Provisioning Server establishes a session with Provisioning
Client. Also, Provisioning Server closes a session after Provisioning Process.

Unprovisioned Device

‘ ‘ Mesh Application Mesh Stack ‘ ‘ Bluetooth Bearer ‘ ‘ Provisioner Device

PB-ADV Link Establishment i
