
 Application Note

R01AN7247EJ0100 Rev.1.00 Page 1 of 47
Mar.23.24

RISC-V MCU
Renesas Flash Driver
Introduction
This application note describes a flash programming software module which is based on Software Integration
System (SIS) technology.
This module has been developed to allow users of supported devices to easily implement flash memory self-
programming*1.
This application note describes how-to use this module and integrate it within an application program.

*1 Self-programming is a method of reprogramming flash memory by the user applications.

Target Devices
R9A02G021

Target Compilers
• LLVM for RISC-V

For details on the tested environment please refer to section “4.1 Confirmed Operation Environment”.

Related Documents
• Board Support Package Using Software Integration System (R01AN7177)

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 2 of 47
Mar.23.24

Contents

1. Overview ... 4
1.1 Flash Module Overview ... 4
1.1.1 Flash Types Overview ... 4
1.1.2 Supported Features ... 4
1.2 API Overview ... 5
1.3 Limitations ... 6
1.3.1 Flash Memory Access Restrictions ... 6
1.3.2 Clock limitation when reprogramming the flash memory .. 6

2. API Information .. 7
2.1 Hardware Requirements ... 7
2.2 Software Requirements ... 7
2.3 Supported Toolchains ... 7
2.4 Interrupt Vector .. 7
2.5 Header Files .. 7
2.6 Integer Types ... 7
2.7 Configuration Overview ... 8
2.8 Code Size .. 9
2.9 Parameters .. 10
2.9.1 Definitions .. 10
2.9.2 Definitions of Flash Memory Functionality and Capacity .. 12
2.10 Return Values .. 13
2.11 Callback Function .. 14
2.12 Adding the Software Integration System (SIS) to Your Project ... 15
2.13 Blocking Mode and Non-blocking Mode .. 16
2.13.1 Using in Blocking Mode ... 16
2.13.2 Using in Non-blocking Mode ... 16
2.14 Region Protection via Access Windows .. 18
2.14.1 Access Window-based Region Protection .. 18
2.15 Usage Combined with Existing User Projects ... 19
2.16 Reprogramming Flash Memory ... 20
2.16.1 Reprogramming Code Flash Memory by Running Code on the RAM .. 21

3. API Functions .. 22
3.1 R_FLASH_Open() ... 22
3.2 R_FLASH_Close() ... 24
3.3 R_FLASH_Erase()... 25
3.4 R_FLASH_BlankCheck() ... 27
3.5 R_FLASH_Write() .. 30
3.6 R_FLASH_Control() .. 32

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 3 of 47
Mar.23.24

4. Appendices .. 41
4.1 Confirmed Operation Environment .. 41
4.2 Troubleshooting ... 42
4.3 Compiler-Dependent Settings ... 43
4.3.1 Using LLVM for RISC-V .. 43
4.3.1.1 Programming Code Flash from RAM .. 43

5. Website and Support ... 46

Revision History .. 47

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 4 of 47
Mar.23.24

1. Overview

1.1 Flash Module Overview
This module was designed so that the flash memory (code flash memory and data flash memory) embedded
in the MCU can be reprogrammed.

An API function used to reprogram flash memory is provided with this module.

1.1.1 Flash Types Overview
Flash memory is categorized by the features supported by MCU. Table 1.1 summarizes the categories
relevant to this module.

Table 1.1 Supported MCU Groups by Flash Type

Flash Type Supported MCU Groups
1 R9A02G021

1.1.2 Supported Features
Table 1.2 describes the flash types that are required for the features supported by this module.

Table 1.2 Supported Features by Flash Type

Functionality Overview Flash Type

1

Program Programs the specified region.
✔

Erase Erases the specified region.
✔

Blank check Checks that a specified region is not programmed.
✔

Access window Sets only specified regions as reprogrammable and
protects the other regions.

✔*1

Startup program protection Swaps the region containing the startup program after a
reset to protect the startup region.

✔

Flash sequencer reset Resets the flash sequencer.
✔

*1 Access window can only be used on code flash memory.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 5 of 47
Mar.23.24

1.2 API Overview
Table 1.3 describes information on the API information embedded in this module.

Table 1.3 API Functions

Function Description of Function
R_FLASH_Open() Initializes this module.
R_FLASH_Close() Closes this module.
R_FLASH_Erase() Erases specified blocks in data flash memory or code flash memory.
R_FLASH_BlankCheck() Checks that specified regions in data flash memory or code flash memory have

not been programmed.
R_FLASH_Write() Programs specific data into specified regions in data flash memory or code flash

memory.
R_FLASH_Control() Performs functionality other than programming, erasing, and blank check.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 6 of 47
Mar.23.24

1.3 Limitations
1.3.1 Flash Memory Access Restrictions
The flash sequencer has a read mode for reading the flash memory and a P/E mode for reprogramming the
flash memory.

Table 1.4 describes the regions that can and cannot be read during P/E mode.

Table 1.4 Regions With/Without Read Access During P/E Mode

Region Accessed During P/E
Mode

Regions Without Read Access Regions With Read Access*1

Code flash memory Code flash memory Data flash memory
RAM

Data flash memory Data flash memory Code flash memory
RAM

*1 Excluding data flash memory, the reprogramming code and interrupt vector tables should be allocated in
regions with read access. i.e. RAM.

Refer to section 2.16.1 for more information on running the reprogramming code from RAM.

It is necessary to reallocate interrupt vector tables and interrupt handlers to the RAM for interrupts that may
occur while the code flash memory is being reprogrammed. Refer to section 4.3.1.1 for a usage example.

1.3.2 Clock limitation when reprogramming the flash memory
Do not modify the clock settings between the execution of the R_FLASH_Open function call and the
completion of the R_FLASH_Close function call.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 7 of 47
Mar.23.24

2. API Information
This module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
This driver requires that your MCU supports the following peripheral(s):

• Flash memory (code flash memory and data flash memory)

2.2 Software Requirements
The driver is dependent on the following BSP module.

• Board Support Package (r_bsp) v1.00 or later.

2.3 Supported Toolchains
This module has been confirmed to work with the toolchain listed in 4.1 Confirmed Operation Environment.

2.4 Interrupt Vector
 When the FLASH_CFG_DATA_FLASH_MODE or FLASH_CFG_CODE_FLASH_MODE configuration
option (see section 2.7) is set to NON_BLOCKING(“1”), enable the interrupts shown in Table 2.1 below.
When using in non-blocking mode, set the interrupt vector to be used. Refer to “interrupt Settings” in “RISC-V
MCU Smart Configurator User’s Guide: e2 studio (R20AN0730)” for details.

Table 2.1 Interrupt Vectors Used in this Module

Flash Type Interrupt Vector
1 FCU_FRDYI interrupt (vector no.:21,29,37,45)

2.5 Header Files
All API calls and their supporting interface definitions are in “r_flash_if.h”. This file should be included by all
files which utilize the Flash Module.

The configuration options that can be set at build time are defined in the “r_flash_config.h” file.

2.6 Integer Types
This project uses ANSI C99 “Exact width integer types” to make the code clearer and more portable. These
types are defined in stdint.h.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 8 of 47
Mar.23.24

2.7 Configuration Overview
Configuring this module is done through the supplied r_flash_config.h header file. Each configuration item is
represented by a macro definition in this file. Each configurable item is detailed in the table below.

Configuration options in r_flash_config.h

FLASH_CFG_PARAM_CHECKING_ENABLE
*Default value is “1”.

Enables/disables the inclusion of parameter check
processing into the code.
A value of “0” omits parameter check processing from the
code.
A value of “1” includes parameter check processing in the
code.

FLASH_CFG_CODE_FLASH_ENABLE
*Default value is “0”.

Enables/disables the inclusion of code used to program
code flash memory regions.
A value of “0” includes code used to program data flash
memory regions only (no code flash memory regions).
A value of “1” includes code used to program both code
flash memory regions and data flash memory regions.

FLASH_CFG_DATA_FLASH_MODE
*Default value is “0”.

Specifies the processing method for data flash memory.
A value of BLOCKING (“0”) processes data flash memory in
blocking mode.
A value of NON_BLOCKING (“1”) processes data flash
memory in non-blocking mode.
When FLASH_CFG_CODE_FLASH_ENABLE is set to “1”,
make the same setting as
FLASH_CFG_CODE_FLASH_MODE.
Refer to section 2.13 for details on blocking mode and non-
blocking mode.

FLASH_CFG_CODE_FLASH_MODE
*Default value is “0”.

Specifies the processing method for code flash memory.
A value of BLOCKING (“0”) processes code flash memory
in blocking mode.
A value of NON_BLOCKING (“1”) processes code flash
memory in non-blocking mode.
When FLASH_CFG_CODE_FLASH_ENABLE is set to “1”,
make the same setting as
FLASH_CFG_DATA_FLASH_MODE.
Refer to section 2.13 for details on blocking mode and non-
blocking mode.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 9 of 47
Mar.23.24

2.8 Code Size
The ROM size, RAM size, and the maximum stack size of this module are described in the following table.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options set in the module configuration header file.

The values in the table below are confirmed under the following conditions.

Module Revision: r_flash Rev.1.00
Compiler Version: LLVM for RISC-V V17.0.2.202401

Configuration Options: The setting of configuration options that are different is described in each table.

Other configuration options are default settings.

Flash Type 1: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
LLVM for RISC-V
With Parameter Checking Without Parameter Checking

R9A02G021 ROM 6318 bytes 5654 bytes
RAM 6120 bytes 5574 bytes
STACK 148 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_MODE (NON_BLOCKING)
FLASH_CFG_CODE_FLASH_MODE (NON_BLOCKING)

Flash Type 1: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
LLVM for RISC-V
With Parameter Checking Without Parameter Checking

R9A02G021 ROM 2544 bytes 2250bytes
RAM 40 bytes
STACK 72 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_MODE (BLOCKING)
FLASH_CFG_CODE_FLASH_MODE (BLOCKING)

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 10 of 47
Mar.23.24

2.9 Parameters
This section defines the structure and enumeration used for API function arguments.

2.9.1 Definitions
Structures and enumerations used as module arguments are defined in “r_flash_if.h”.

/* Callback function event type */
typedef enum _flash_interrupt_event
{
 FLASH_INT_EVENT_INITIALIZED, // No value is returned
 FLASH_INT_EVENT_ERASE_COMPLETE, // Completion of erase process
 FLASH_INT_EVENT_WRITE_COMPLETE, // Completion of program process
 FLASH_INT_EVENT_BLANK, // Blank check result - blank
 FLASH_INT_EVENT_NOT_BLANK, // Blank check result - not blank
 FLASH_INT_EVENT_TOGGLE_STARTUPAREA, // Swapping of the startup region
 FLASH_INT_EVENT_SET_ACCESSWINDOW, // Configuration of access window
 FLASH_INT_EVENT_ERR_FAILURE, // Error during program or erase process
 FLASH_INT_EVENT_END_ENUM // No value is returned
} flash_interrupt_event_t;

/* Definitions used for registration of callback function */
typedef struct _flash_interrupt_config
{
 void (*pcallback)(void *); // Callback function pointer
 uint8_t int_priority; // Interrupt priority
} flash_interrupt_config_t;

/* Definitions used as the callback function arguments */
typedef struct
{
 flash_interrupt_event_t event; // Interrupt-causing event
} flash_int_cb_args_t;

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 11 of 47
Mar.23.24

/* R_FLASH_Control Function command definitions */
typedef enum _flash_cmd
{
 FLASH_CMD_RESET, // Resets the flash sequencer
 FLASH_CMD_STATUS_GET, // Retrieves the status of the Flash driver API
 FLASH_CMD_SET_BLOCKING_CALLBACK, // Registers the callback function
 FLASH_CMD_SWAPFLAG_GET, // Retrieves configuration of the current startup region
 FLASH_CMD_SWAPFLAG_TOGGLE, // Swaps the startup region
 FLASH_CMD_SWAPSTATE_GET, // Retrieves setting of the startup region selection bit
 FLASH_CMD_SWAPSTATE_SET, // Sets the startup region selection bit
 FLASH_CMD_ACCESSWINDOW_SET, // Sets the access window boundary
 FLASH_CMD_ACCESSWINDOW_GET, // Retrieves the access window boundary
 FLASH_CMD_END_ENUM // This definition is not used
} flash_cmd_t;

/* Definitions of R_FLASH_Control and R_FLASH_BlankCheck function results */
typedef enum _flash_res
{
 FLASH_RES_BLANK, // R_FLASH_BlankCheck result - blank
 FLASH_RES_NOT_BLANK // R_FLASH_BlankCheck result - not blank
} flash_res_t;

/* Definitions used with FLASH_CMD_ACCESSWINDOW_SET/GET commands in R_FLASH_Control
function */
typedef struct _flash_access_window_config
{
 uint32_t start_addr; // Start address of access window
 uint32_t end_addr; // End address of access window
} flash_access_window_config_t;

/* Selected of flash memory to be processed */
typedef enum _flash_type
{
 FLASH_TYPE_CODE_FLASH = 0, // Specify Code Flash
 FLASH_TYPE_DATA_FLASH, // Specify Data Flash
 FLASH_TYPE_INVALID // Abnormally specified flash memory.
} flash_type_t;

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 12 of 47
Mar.23.24

2.9.2 Definitions of Flash Memory Functionality and Capacity
The defined macros and enumerative arguments to be used as API parameters depend on the flash memory
functionality and capacity. The provided definitions for R9A02G021 MCUs are listed below.

File name: r_flash\src\targets\r9a02g021\r_flash_r9a02g021.h

/* Definitions related to flash memory block counts, block sizes, minimum programming
sizes, block numbers, and addresses */
- omitted -

#define MCU_ROM_SIZE_BYTES (131072)
#define MCU_RAM_SIZE_BYTES (16384)

#define FLASH_NUM_BLOCKS_DF (4)
#define FLASH_DF_MIN_PGM_SIZE (1)
#define FLASH_CF_MIN_PGM_SIZE (8)

#define FLASH_DF_BLOCK_SIZE (1024)
#define FLASH_CF_BLOCK_SIZE (2048)
#define FLASH_DF_FULL_SIZE (FLASH_NUM_BLOCKS_DF*FLASH_DF_BLOCK_SIZE)

#define FLASH_NUM_BLOCKS_CF (MCU_ROM_SIZE_BYTES / FLASH_CF_BLOCK_SIZE)

- omitted -

typedef enum _flash_block_address
{
 FLASH_CF_BLOCK_0 = 0x00000000, /* 2KB: 0x00000000 - 0x000007FF */
 FLASH_CF_BLOCK_1 = 0x00000800, /* 2KB: 0x00000800 - 0x00000FFF */

- omitted -

 FLASH_CF_BLOCK_63 = 0x0001F800, /* 2KB: 0x0001F800 - 0x0001FFFF */
 FLASH_CF_BLOCK_END = 0x0001FFFF, /* End of Code Flash Area */
 FLASH_CF_BLOCK_INVALID = FLASH_CF_BLOCK_END,

 FLASH_DF_BLOCK_0 = 0x40100000, /* 1KB: 0x40100000 - 0x401003FF */
 FLASH_DF_BLOCK_1 = 0x40100400, /* 1KB: 0x40100400 - 0x401007FF */
 FLASH_DF_BLOCK_2 = 0x40100800, /* 1KB: 0x40100800 - 0x40100BFF */
 FLASH_DF_BLOCK_3 = 0x40100C00, /* 1KB: 0x40100C00 - 0x40100FFF */
 FLASH_DF_BLOCK_INVALID = FLASH_DF_BLOCK_0 + FLASH_DF_FULL_SIZE
} flash_block_address_t;

- omitted -

Use these definitions as the arguments for the module’s API functions. Refer to the descriptions and
examples of API functions in section 3 for details on actual usage.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 13 of 47
Mar.23.24

2.10 Return Values
This shows the different values API functions can return. This enumeration is described in the API function
prototype declarations as well as in “r_flash_if.h”.

/* Flash Driverreturn value definitions */
typedef enum _flash_err
{
 FLASH_SUCCESS = 0,
 FLASH_ERR_BUSY, // Flash module is in busy state
 FLASH_ERR_ACCESSW, // Access window error
 FLASH_ERR_FAILURE, // Flash operation, program, erase process, or other error
 FLASH_ERR_FREQUENCY, // Illegal frequency specified
 FLASH_ERR_BYTES, // Invalid number of bytes specified
 FLASH_ERR_ADDRESS, // Invalid address or non-program boundary address specified
 FLASH_ERR_BLOCKS, // The “number of blocks” argument is invalid
 FLASH_ERR_PARAM, // Illegal parameter specified
 FLASH_ERR_NULL_PTR, // NULL specified
 FLASH_ERR_TIMEOUT, // Timeout occurred
 FLASH_ERR_ALREADY_OPEN, // Open() called twice without calling Close().
 FLASH_ERR_HOCO // The HOCO is not running.
} flash_err_t;

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 14 of 47
Mar.23.24

2.11 Callback Function
This module calls the callback function specified by the user at timings of FCU_FRDYI interrupt generations.

The callback function is configured by storing the address of the user’s function in the “pcallback” structure
member as described in “2.9 Parameters”. When the callback function is called, variables storing the
constants described in Table 2.2 are passed as arguments.

Use a void pointer variable as the argument of the callback function as arguments are passed as void
pointers.

Use values inside the callback function by casting them.

Refer to Example 1 in section 3.6 for example implementations of the callback function.

Table 2.2 Flash Type 1 Callback Function Arguments (enum flash_interrupt_event_t)

Constant Definitions Description
FLASH_INT_EVENT_ERASE_COMPLETE Called by the FCU_FRDYI interrupt processing

and indicates completion of the erase process.
FLASH_INT_EVENT_WRITE_COMPLETE Called by the FCU_FRDYI interrupt processing

and indicates completion of the program process.
FLASH_INT_EVENT_BLANK

Called by the FCU_FRDYI interrupt processing
and indicates that the blank check resulted in a
blank state.

FLASH_INT_EVENT_NOT_BLANK Called by the FCU_FRDYI interrupt processing
and indicates that the blank check resulted in a
non-blank state.

FLASH_INT_EVENT_TOGGLE_STARTUPAREA

Called by the FCU_FRDYI interrupt processing
and indicates completion of swapping the startup
region.

FLASH_INT_EVENT_SET_ACCESSWINDOW

Called by the FCU_FRDYI interrupt processing
and indicates completion of configuring the access
window.

FLASH_INT_EVENT_ERR_FAILURE Called by the FCU_FRDYI interrupt processing
and indicates an error occurred during the
program or erase process.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 15 of 47
Mar.23.24

2.12 Adding the Software Integration System (SIS) to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) below.

(1) Adding the Flash driver to your project using Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the Flash driver is automatically added to your project.
Refer to “RISC-V MCU Smart Configurator User’s Guide: e2 studio (R20AN0730)” for details.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 16 of 47
Mar.23.24

2.13 Blocking Mode and Non-blocking Mode
API functions in this module operate in blocking and non-blocking modes.

Blocking mode does not return until the API function has finished processing the flash memory.

Non-blocking mode returns without waiting for the API function to finish processing the flash memory.

2.13.1 Using in Blocking Mode
When using this module in blocking mode, set configuration options as shown below. Set
FLASH_CFG_DATA_FLASH_MODE and FLASH_CFG_CODE_FLASH_MODE to the same value.

• FLASH_CFG_DATA_FLASH_MODE: BLOCKING
• FLASH_CFG_CODE_FLASH_MODE: BLOCKING

2.13.2 Using in Non-blocking Mode
When using this module in non-blocking mode, set configuration options as shown below. Set
FLASH_CFG_DATA_FLASH_MODE and FLASH_CFG_CODE_FLASH_MODE to the same value.

• FLASH_CFG_DATA_FLASH_MODE: NON_BLOCKING
• FLASH_CFG_CODE_FLASH_MODE: NON_BLOCKING
Users should not access flash memory regions until flash memory process is complete. If accessed, the flash
sequencer generates an error preventing processing from completing properly.

Notification of the result of flash memory processing is sent via the callback function. Register the callback
function in advance by executing R_FLASH_Open() and specifying the
FLASH_CMD_SET_BLOCKING_CALLBACK command for the argument of R_FLASH_Control(). (Refer to
section 3.6 for details.)
Table 2.3 describes the API functions that send notification of processing results via the callback function.

Table 2.3 API Functions that Send Notifications of Processing Results via the Callback Function

API Function Processing Result Notification via the Callback
Function

R_FLASH_Open(), R_FLASH_Close() Does not send notifications
R_FLASH_Erase(), R_FLASH_BlankCheck(),
R_FLASH_Write()

Sends notifications

R_FLASH_Control() Sends notifications for the following commands:
• FLASH_CMD_SWAPFLAG_TOGGLE
• FLASH_CMD_ACCESSWINDOW_SET

A FCU_FRDYI interrupt occurs when flash memory processing completes. The callback functions registered
by each interrupt are called. Events indicating the completion status are passed to the callback function.
Refer to section 2.11 for details on callback functions.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 17 of 47
Mar.23.24

When reprogramming data flash in non-blocking mode, the interrupt handler routine in the BSP must be
assigned to the selected interrupt vector via the IELSRn register. The following files shall be edited.

\smc_gen\general\r_cg_inthandler.c

The following is an example of assignment to vector number 21. (IRQ number 2, vector offset 0x54 in the
interrupt vector table). Add the exception handler function call between the ‘Start user code’/’End user code’
auto-generated comment lines, as shown below.
/*
 * INT_IELSR2 (0x54)
 */
void INT_IELSR2(void)
{
 /* Start user code for INT_IELSR2. Do not edit comment generated here */
 void Excep_FCU_FRDYI(void);
 Excep_FCU_FRDYI();
 /* End user code. Do not edit comment generated here */
}

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 18 of 47
Mar.23.24

2.14 Region Protection via Access Windows
A regions of MCU flash memory can be protected by using the access window, to prevent unintentional
erasure or overwrite. API functions in this module support the following features.

2.14.1 Access Window-based Region Protection
Regions can be protected by using access window function in Flash Type 1 products.

The access window configuration is defined by specifying the start and end addresses of the flash blocks
(region) to be protected.

The region defined by the start and end addresses can be re-programmed by the application. The
application shall take care of defining the proper access window for areas of flash which shhall be write
protected.

All regions are by default reprogrammable since the access window is not configured, until the registers are
programmed with non-default values.

Use R_FLASH_Control() to configure access windows. Refer to section 3.6 for details.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 19 of 47
Mar.23.24

2.15 Usage Combined with Existing User Projects
Using the BSP startup disable function, this module can be used in combination with existing user projects.

The BSP startup disable function is a function to add and use this module and other peripheral SIS modules
to an existing user project without creating a new project.

BSP and this module (as applicable, other peripheral SIS modules) are incorporated into the existing user
project. Even though it is necessary to incorporate BSP, since all startup processing performed by the BSP
become disabled, this module and other peripheral SISmodules can be used in combination with startup
processing of the existing user project.

There are some settings and notes for using the BSP startup disable function. Refer to “Board Support
Package Using Software Integration System (R01AN7177)” for details.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 20 of 47
Mar.23.24

2.16 Reprogramming Flash Memory
Code required to perform flash memory reprogramming is allocated in code flash memory as shown in
Figure 2.1 (left figure). As shown in Figure 2.1 (right figure), running this code in code flash memory enables
reprogramming of the target regions in code or data flash memory.

Figure 2.1 Location of Code Required to Perform Flash Memory Reprogramming and
Reprogramming Process

Note that, as shown in Figure 2.2, the region containing the code required to perform flash memory
reprogramming cannot be reprogrammed.

Figure 2.2 Reprogramming of Region Containing Code Required to Perform Flash Memory
Reprogramming

Section 2.16.1 describe the available methods of reprogramming code flash memory.

Data flash memory

Code flash memory

Code flash memory

Code flash memory

RAM

Data flash memory

Reprogramming code

RAM

Reprogramming
code Run

Reprogram

RAM

Data flash memory

Run
Reprogramming

code Reprogram

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 21 of 47
Mar.23.24

2.16.1 Reprogramming Code Flash Memory by Running Code on the RAM
As shown in Figure 2.3, copying to and then running the code required to reprogram flash memory in RAM
enables reprogramming of regions in code flash memory.*1

Figure 2.3 Reprogramming Code Flash Memory by Running Code on the RAM

Configure the configuration options of this module as follows.

• FLASH_CFG_CODE_FLASH_ENABLE: 1

*1 The code required to perform flash memory reprogramming is copied to RAM using the

R_FLASH_Open() function of this module.
It is necessary to reallocate interrupt vector tables and interrupt handlers to RAM for interrupts that may
occur while the code flash memory is being reprogrammed. For details, refer to section 4.3.1.1.

Code flash memory

RAM

Data flash memory

Copy

Run Reprogramming
code

Reprogram
Reprogramming code

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 22 of 47
Mar.23.24

3. API Functions

3.1 R_FLASH_Open()
This API function initializes flash modules. Note that this function must be called before any other API
function.

Format
flash_err_t R_FLASH_Open(void)

Parameters
None

Return Values
FLASH_SUCCESS /* Successfully initialized. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, try again later. */
FLASH_ERR_ALREADY_OPEN /* Already open. Run R_FLASH_Close(). */
FLASH_ERR_FREQUENCY /* The frequency setting of the Systemclock (ICLK) is invalid. */
FLASH_ERR_HOCO /* The HOCO is not running. */

Properties
Prototyped in file “r_flash_ if.h”.

Description
This API function performs the following processing.

1. Preparing the code required to perform flash memory reprogramming

The code required to perform flash memory reprogramming is allocated depending on the
configuration of configuration options as described in Table 3.1.

Table 3.1 Code Allocations in Relation to Configuration of Configuration Options

Configuration Option Setting Code Allocation
FLASH_CFG_CODE_FLASH_ENABLE 0 Code that processes Data flash memory is

allocated in code flash memory. FLASH_CFG_CODE_FLASH_MODE Don’t care
FLASH_CFG_DATA_FLASH_MODE 0 or 1
FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is

copied into RAM. FLASH_CFG_CODE_FLASH_MODE 0
FLASH_CFG_DATA_FLASH_MODE 0 or 1
FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is

copied into RAM. The functionality to
reallocate interrupt vector tables or interrupt
processing is included*1

FLASH_CFG_CODE_FLASH_MODE 1
FLASH_CFG_DATA_FLASH_MODE 0 or 1

*1 When FLASH_CFG_CODE_FLASH_MODE is set to NON_BLOCKING(“1”),the functionality of
reallocating interrupt vector tables or interrupt processing is enabled. Refer to section 4.3.1.1 for details.

Reentrant
• Not allowed

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 23 of 47
Mar.23.24

Example
flash_err_t err;

/* Initialize the API. */
err = R_FLASH_Open();

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
Do not modify the clock settings between the execution of the R_FLASH_Open function call and the
completion of the R_FLASH_Close function call.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 24 of 47
Mar.23.24

3.2 R_FLASH_Close()
This API function terminates flash module processing.

Format
flash_err_t R_FLASH_Close(void)

Parameters
None

Return Values
FLASH_SUCCESS /* Successful termination of flash module processing. */
FLASH_ERR_BUSY /* A different flash memory process is being executed,

 try again later. */

Properties
Prototyped in file “r_flash_if.h”.

Description
This API function terminates flash module processing by prohibiting the interrupt described in section 2.4 and
setting the module to an uninitialized state.

Reentrant
• Not allowed

Example
flash_err_t err;

/* Close the driver */
err = R_FLASH_Close();

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
None

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 25 of 47
Mar.23.24

3.3 R_FLASH_Erase()
This API function erases specified blocks in code flash memory or data flash memory.

Format
flash_err_t R_FLASH_Erase(
 flash_block_address_t block_start_address,
 uint32_t num_blocks
)

Parameters
block_start_address

Specifies the start address of the blocks to be erased.

“flash_block_address_t” defines the starting block address and block number.

“flash_block_address_t” is defined in “r_flash\src\targets\<mcu>\r_flash_<mcu>.h”.

num_blocks
Specifies the number of blocks to be erased.

Return Values
FLASH_SUCCESS /* Successful completion of erase processing. In non-blocking mode,

 this indicates that erase processing has started. */
FLASH_ERR_BLOCKS /* Specified number of blocks is invalid. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module

is not initialized. */
FLASH_ERR_FAILURE /* Erase processing failure. In non-blocking mode,

 the callback function is not registered. */

Properties
Prototyped in file “r_flash_if.h”.

Description
Code flash memory and data flash memory is erased in blocks.

Table 3.2 describes the difference in block sizes by MCU group.

Table 3.2 Block Sizes by MCU Group

MCU Group Code Flash Memory*1 Data Flash Memory*2
R9A02G021 2 Kbyte 1 Kbyte

*1 Defined as FLASH_CF_BLOCK_SIZE in the specific MCU definitions file
(“r_flash\src\targets\<mcu>\r_flash_<mcu>.h”).

*2 Defined as FLASH_DF_BLOCK_SIZE in the specific MCU definitions file
(“r_flash\src\targets\<mcu>\r_flash_<mcu>.h”).

When this API function is used in non-blocking mode, FCU_FRDYI interrupt occurs after blocks for the
specified number are erased, and then the callback function is called.

Reentrant
• Not allowed

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 26 of 47
Mar.23.24

Example
The first argument specifies the starting block address for the erase process.

The second argument specifies the number of blocks to be erased starting from the starting block address
for the erase process.

The following code examples shows erase processing for flash memory with multiple blocks specified.

flash_err_t err;

/* Erases code flash memory blocks in order from smaller to larger block numbers starting
from block 4. */
/* The following code causes blocks 4 and 5 in code flash memory to be erased. */
err = R_FLASH_Erase(FLASH_CF_BLOCK_4, 2);

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
None

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 27 of 47
Mar.23.24

3.4 R_FLASH_BlankCheck()
This API function determines if specified code flash memory or data flash memory blocks are blank.

Format
flash_err_t R_FLASH_BlankCheck(
 uint32_t address,
 uint32_t num_bytes,
 flash_res_t *blank_check_result
)

Parameters
address

Specifies the start address of the region to be processed by the blank check feature.
This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

num_bytes
Specifies the number of bytes subject to the blank check.
This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

*blank_check_result
Specifies the memory address storing the blank check result when using blocking mode.
The following are stored as the blank check results.

• FLASH_RES_BLANK: Blank
• FLASH_RES_NOT_BLANK: Not blank
In non-blocking mode, specify any value since this parameter is not used.

Return Values
FLASH_SUCCESS /* Successful completion of blank check processing. In non-blocking

mode, this indicates that blank check processing has started. */
FLASH_ERR_FAILURE /* Blank check processing failure. In non-blocking mode, the callback

function is not registered.
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module is not

initialized. */
FLASH_ERR_BYTES /* “num_bytes” was either too large, not a multiple of the minimum

programming size, or exceeded the maximum range. */
FLASH_ERR_ADDRESS /* Invalid address was specified. */

/* Address is not a multiple of the minimum programming size or a flash
type not supported for blank check was specified. */

FLASH_ERR_NULL_PTR /* “blank_check_result” for storing blank check results was NULL.*/

Properties
Prototyped in file “r_flash_if.h”.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 28 of 47
Mar.23.24

Description
Table 3.3 describes the MCU groups that support blank check.

Table 3.3 MCU Groups Supporting Blank Check

MCU Group Code Flash Memory Data Flash Memory
R9A02G021 ● ●

●: Supported, －: Unsupported

The address specified by the first argument and the number of bytes specified by the second argument of
this API function must be in multiples of the minimum programming size. The minimum programming size
varies depending on the type of both the MCU and flash memory. Refer to Table 3.4 in section 3.5 for
details.

If this API function is used in non-blocking mode, the result of the blank check is passed as the argument of
the callback function after the blank check is complete.

Reentrant
• Not allowed

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 29 of 47
Mar.23.24

Example
The first argument specifies the start address to be processed by the blank check feature.
The second argument specifies the number of bytes subject to the blank check.
Both of these arguments must be expressed in multiples of the minimum programming size.

flash_err_t err;
flash_res_t result;

/* Run the blank check on the first 64 bytes in block 0 of data flash memory. */
err = R_FLASH_BlankCheck((uint32_t)FLASH_DF_BLOCK_0, 64, &result);
if (FLASH_SUCCESS != err)
{
 /* Error processing */
}
else
{
 /* Check result */
 if (FLASH_RES_NOT_BLANK == result)
 {
 /* Processing when block is not blank */
 ・・・
 }
 else if (FLASH_RES_BLANK == ret)
 {
 /* Processing when block is blank */
 ・・・
 }
}

/* Run the blank check on the first 64 bytes in block 8 of code flash memory. */
err = R_FLASH_BlankCheck((uint32_t)FLASH_CF_BLOCK_8, 64, &result);
if (FLASH_SUCCESS != err)
{
 /* Error processing */
}
else
{
 /* Check result */
 if (FLASH_RES_NOT_BLANK == result)
 {
 /* Processing when block is not blank */
 ・・・
 }
 else if (FLASH_RES_BLANK == ret)
 {
 /* Processing when block is blank */
 ・・・
 }
}

Special Notes:
None

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 30 of 47
Mar.23.24

3.5 R_FLASH_Write()
This API function reprograms code flash memory or data flash memory.

Format
flash_err_t R_FLASH_Write(
 uint32_t src_address,
 uint32_t dest_address,
 uint32_t num_bytes
)

Parameters
src_address

Specifies the start address of the buffer storing the data to be written in flash memory.

dest_address
Specifies the start address of the region in flash memory to be reprogrammed.

This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

num_bytes
Specifies the number of bytes in flash memory to be written.

This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

Return Values
FLASH_SUCCESS /* Successful completion of programming. In non-blocking mode, this

indicates that programming has started. */
FLASH_ERR_FAILURE /* Programming failed due to flash sequencer error. In non-blocking

mode, the callback function is not registered. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module

is not initialized. */
FLASH_ERR_BYTES /* Number of bytes provided was not a multiple of the minimum

programming size or exceeds the maximum range. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */

Properties
Prototyped in file “r_flash_if.h”.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 31 of 47
Mar.23.24

Description
Flash memory regions must be erased before being reprogrammed.

The address specified by the second argument and the number of bytes specified by the third argument of
this API function must be in multiples of the minimum programming size. The minimum programming size
varies depending on the MCU and flash memory as described in Table 3.4.

Table 3.4 Minimum Programming Sizes by MCU Group

MCU Group Code Flash Memory*1 Data Flash Memory*2
R9A02G021 8 bytes 1 byte

*1 Defined as FLASH_CF_MIN_PGM_SIZE in the specific MCU definitions file
(“r_flash\src\targets\<mcu>\r_flash_<mcu>.h”).

*2 Defined as FLASH_DF_MIN_PGM_SIZE in the specific MCU definitions file
(“r_flash\src\targets\<mcu>\r_flash_<mcu>.h”).

When this API function is used in non-blocking mode, the callback function is called when all write operations
are complete.

Reentrant
• Not allowed

Example
The second argument specifies the addresses in flash memory to be reprogrammed.

The third argument specifies the number of bytes to be written in flash memory.

Both of these arguments must be expressed in multiples of the minimum programming size.

flash_err_t err;
uint8_t write_buffer[16] = “Hello World...”;

/* Write data to internal memory.*/
err = R_FLASH_Write((uint32_t)write_buffer, dst_addr, sizeof(write_buffer));

if (FLASH_SUCCESS != err)
{
 ・・・
}

Special Notes:
None

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 32 of 47
Mar.23.24

3.6 R_FLASH_Control()
This API function perform processing other than programming, erasing, and blank check.

Format
flash_err_t R_FLASH_Control(
 flash_cmd_t cmd,
 void *pcfg
)

Parameters
cmd

Specifies the command to execute.

*pcfg
Specifies the required arguments depending on the command specified by argument 1. Set this to NULL
if no arguments are required for the particular command.

Return Values
FLASH_SUCCESS /* Successful completion. In non-blocking mode, this indicates that

processing has started successfully. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */
FLASH_ERR_NULL_PTR /* NULL was specified even though the second argument was

required. */
FLASH_ERR_BUSY /* A different flash module process is being executed, or the module

is not initialized. */
FLASH_ERR_ACCESSW /* An access window error occurred. Incorrect region specified. */
FLASH_ERR_PARAM /* Invalid parameter was passed. */

Properties
Prototyped in file “r_flash_if.h”.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 33 of 47
Mar.23.24

Description
This API function performs processing according to the command specified as an argument. Table 3.5
describes the supported commands by flash type.

Table 3.5 Supported Commands by Flash Type

Type of Command Command Flash Type
1

Common among all flash types

Retrieve flash module API function running status FLASH_CMD_STATUS_GET ✔

Register callback function FLASH_CMD_SET_BLOCKING_CALLBACK ✔

Flash sequencer reset FLASH_CMD_RESET ✔

Access window

Retrieve access window configuration FLASH_CMD_ACCESSWINDOW_GET ✔*1

Configure access window FLASH_CMD_ACCESSWINDOW_SET

Startup program protection

Retrieve startup region setting FLASH_CMD_SWAPFLAG_GET ✔*2

Swap startup region FLASH_CMD_SWAPFLAG_TOGGLE

Retrieve startup region selection bit setting FLASH_CMD_SWAPSTATE_GET

Set startup region selection bit FLASH_CMD_SWAPSTATE_SET
*1 Access window can only be used on code flash memory.
*2 Only supported on products with at least 32 Kbytes of code flash memory.

Table 3.6 describe details of supported commands organized by flash type.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 34 of 47
Mar.23.24

Table 3.6 Details of Commands Supported by Flash Type 1

Command Contents
FLASH_CMD_STATUS_GET
(Set the argument value to NULL.)
*Refer to Example 3 for usage examples.

Retrieves the running state of the flash sequencer for
flash memory.
This command can be used even while flash memory
processing is running.
FLASH_SUCCESS:
Flash sequencer is not running.
FLASH_ERR_BUSY:
Flash sequencer is running.

FLASH_CMD_SET_BLOCKING_CALLBACK
(Argument: flash_interrupt_config_t *)
*Refer to Example 1 and Example 2 for
usage examples.

Registers the callback function. This command requires
operation in non-blocking mode.

FLASH_CMD_RESET
(Set the argument value to NULL.)

Resets the flash sequencer.
This command can be used even while flash memory
processing is running.

FLASH_CMD_ACCESSWINDOW_GET
(Argument: flash_access_window_config_t *)
*Refer to Example 4 for usage examples.

Retrieves the start and end addresses of the blocks
defining the region to which the access window is applied
in code flash memory.

FLASH_CMD_ACCESSWINDOW_SET
(Argument: flash_access_window_config_t *)
*Refer to Example 5 for usage examples.

Specifies the start and end addresses of the blocks
defining the region to which the access window is applied
in code flash memory.
The start address must be a smaller number than the end
address in access window configurations.
Programming and erase processes cannot be performed
on blocks outside the range specified with the start and
end addresses.
Multiple ranges defined by start and end addresses
cannot be specified.
Specify the same start and end addresses to delete an
access window configuration.
When using in non-blocking mode, FCU_FRDYI interrupt
occurs after setting the access window, and then callback
function is called.

FLASH_CMD_SWAPFLAG_GET
(Argument: uint32_t *)
*Refer to Example 6 for usage examples.

Retrieves the startup region setting.
0: Startup from the alternate region
1: Startup from the default region

FLASH_CMD_SWAPFLAG_TOGGLE
(Set the argument value to NULL.)
*Refer to Example 7 for usage examples.

Swaps the startup region.
The swapped startup region takes effect after the next
reset. When using in non-blocking mode, FCU_FRDYI
interrupt occurs after the startup region is swapped, and
then the callback function is called.
Make sure that the
FLASH_CFG_CODE_FLASH_ENABLE configuration
option is set to “1” when using this command.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 35 of 47
Mar.23.24

Command Contents
FLASH_CMD_SWAPSTATE_GET
(Argument: uint8_t *)
*Refer to Example 8 for usage examples.

Retrieves the value of the startup region selection bit
(FISR.SAS).
FLASH_SAS_EXTRA:
The startup region selection bit follows the startup region
configuration.
FLASH_SAS_DEFAULT:
Sets the startup region selection bit to the default region.
FLASH_SAS_ALTERNATE:
Sets the startup region selection bit to the alternate
region.

FLASH_CMD_SWAPSTATE_SET
(Argument: uint8_t *)
*Refer to Example 9 for usage examples.

Sets the value of the startup region selection bit
(FISR.SAS).
The set startup region takes effect immediately.
The default value after a reset is FLASH_SAS_EXTRA.
FLASH_SAS_EXTRA:
Follows the configuration of the startup region in extra
area.
FLASH_SAS_DEFAULT:
Temporarily changes the startup region to the default
region.
FLASH_SAS_ALTERNATE:
Temporarily changes the startup region to the alternate
region.
FLASH_SAS_SWITCH_AREA:
Swaps the startup region.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 36 of 47
Mar.23.24

Example 1: Writing to code flash memory in non-blocking mode
To use flash module API functions in non-blocking mode, set both configuration options
FLASH_CFG_DATA_FLASH_MODE and FLASH_CFG_CODE_FLASH_MODE to NON_BLOCKING (“1”).

To program code flash memory by running code from RAM, set the configuration option
FLASH_CFG_CODE_FLASH_ENABLE to NON_BLOCKING (“1”).

The registered callback function can be used by running R_FLASH_Open (), using R_FLASH_Control () to
register the callback function, and then running a flash module API function (R_FLASH_Write (),
R_FLASH_Erase (), or R_FLASH_BlankCheck ()).

void func(void)
{
 flash_err_t err;
 flash_interrupt_config_t cb_func_info;

 /* Initialize the API. */
 err = R_FLASH_Open();
 /* Check for errors. */
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set callback function and interrupt priority */
 cb_func_info.pcallback = u_cb_function;
 cb_func_info.int_priority = 1;
 err = R_FLASH_Control(FLASH_CMD_SET_BLOCKING_CALLBACK,(void
*)&cb_func_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Perform operations on RAM */
 do_rom_operations();

 ... (omission)
}

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 37 of 47
Mar.23.24

__attribute__((section("PFRAM")))
void u_cb_function(void *event) /* Callback function */
{
 flash_int_cb_args_t *ready_event = event;

 /* Perform ISR callback functionality here */
 ... (omission)
}

__attribute__((section("PFRAM")))
void do_rom_operations(void)
{
 /* Set code flash memory access window, toggle startup area flag */
 /* Swap boot blocks, erase, blank check, or programming processing here */
 ... (omission)
}

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 38 of 47
Mar.23.24

Example 2: Writing to data flash memory in non-blocking mode
To use flash module API functions in non-blocking mode, set both configuration options
FLASH_CFG_DATA_FLASH_MODE to NON_BLOCKING (“1”).

To program data flash memory, the code for reprogramming to flash memory can be ran in code flash
memory.

The registered callback function can be used by running R_FLASH_Open (), using R_FLASH_Control () to
register the callback function, and then running a flash module API function (R_FLASH_Write (),
R_FLASH_Erase (), or R_FLASH_BlankCheck ()).

void func(void)
{
 flash_err_t err;
 flash_interrupt_config_t cb_func_info;

 /* Initialize the API. */
 err = R_FLASH_Open();
 /* Check for errors. */
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set callback function and interrupt priority */
 cb_func_info.pcallback = u_cb_function;
 cb_func_info.int_priority = 1;
 err = R_FLASH_Control(FLASH_CMD_SET_BLOCKING_CALLBACK,(void
*)&cb_func_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set data flash memory erase, blank check, or programming processing here
*/
 ... (omission)
}

void u_cb_function(void *event) /* Callback function */
{
 flash_int_cb_args_t *ready_event = event;

 /* Perform ISR callback functionality here */
 ... (omission)
}

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 39 of 47
Mar.23.24

Example 3: Checking running status of flash module API functions
The following example shows the use of R_FLASH_Erase() in non-blocking mode.
 flash_err_t err;

 /* Erase all of data flash */
 err = R_FLASH_Erase(FLASH_DF_BLOCK_0, FLASH_NUM_BLOCKS_DF);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Check flash module API function running status */
 while (FLASH_ERR_BUSY == R_FLASH_Control(FLASH_CMD_STATUS_GET, NULL))
 {
 /* Execute any process */
 }

Example 4: Retrieving the access window configuration area for code flash memory
 flash_err_t err;
 flash_access_window_config_t access_info;

 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_GET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 5: Configuring the access window area for code flash memory
Access window-based region protection is used to prevent configured areas in the code flash memory from
being accidentally programmed or erased.
 flash_err_t err;
 flash_access_window_config_t access_info;

 /* Allow programming and erasing of block 2 in code flash memory. */
 access_info.start_addr = (uint32_t) FLASH_CF_BLOCK_2;
 access_info.end_addr = (uint32_t) FLASH_CF_BLOCK_3;
 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Allow programming and erasing of block 61 to 63 in code flash memory. */
 /* Use FLASH_CF_BLOCK_END to specify end address if block 63 is included in
setting range. */
 access_info.start_addr = (uint32_t) FLASH_CF_BLOCK_61;
 access_info.end_addr = (uint32_t) FLASH_CF_BLOCK_END;
 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 40 of 47
Mar.23.24

Example 6: Retrieving the startup region setting
 flash_err_t err;
 uint32_t swap_flag;

 err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_GET, (void *)&swap_flag);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 7: Swapping the startup region setting
The following example shows how to toggle the active start-up program area.
 flash_err_t err;

 /* Swap the active area from Default to Alternate or vice versa. */

 err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_TOGGLE, FLASH_NO_PTR);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 8: Retrieving the value of the startup region selection bit
 flash_err_t err;
 uint8_t swap_area;

 err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_GET, (void *)&swap_area);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 9: Setting the value of the startup region selection bit
The following example shows how to set the startup region selection bit. The region specified by the startup
region selection bit will be used after a reset.
 flash_err_t err;
 uint8_t swap_area;

 swap_area = FLASH_SAS_SWITCH_AREA;
 err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_SET, (void *)&swap_area);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Special Notes:
None

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 41 of 47
Mar.23.24

4. Appendices

4.1 Confirmed Operation Environment
This section describes confirmed operation environment for this module.

Table 4.1 Confirmed Operation Environment (Rev. 1.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-01

C compiler LLVM for RISC-V V.17.0.2.202401
 Compiler option: The following option is added to the default settings of the
integrated development environment.

Endian little endian
Revision of the module Rev.1.00
Board used FPB-R9A02G021 Board (product No.: RTK9FPG021S00001BJ)

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 42 of 47
Mar.23.24

4.2 Troubleshooting

(1) Q: I have added this module to the project and built it. Then I got the error: Could not open source
file “platform.h”.

A: The BSP module may not be added to the project properly. Check if the method for adding BSP
modules is correct with the following documents:

• Using e2 studio:
Application note “RISC-V MCU Smart Configurator User's Guide: e2 studio (R20AN0730)”

When using this module, the board support package (BSP module) must also be added to the
project. Refer to the application note “Board Support Package Module Using Software Integration
System (R01AN7177)”.

(2) Q: It is necessary to register a callback function when using non-blocking mode?

A: It is necessary to register a callback function. If no callback function is registered,
FLASH_ERR_FAILURE will result when R_FLASH_Erase(), R_FLASH_BlankCheck(), or
R_FLASH_Write() is run.

(3) Q: Return does not occur from R_FLASH_Erase() or R_FLASH_Write().

A: It is possible that another peripheral interrupt was generated and an interrupt handler allocated to
an access-prohibited area in the code flash memory was run while R_FLASH_Erase() or
R_FLASH_Write() were running. To prevent this, it is necessary to either disable interrupts while
reprogramming the code flash memory or reallocate interrupt vector tables and interrupt handlers to
the RAM for interrupts that may occur while the code flash memory is being reprogrammed.
Interrupt vector tables and interrupt processing are relocated to RAM in r_flash.c. Please add such
module as a reference implementation and adapt as needed.

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 43 of 47
Mar.23.24

4.3 Compiler-Dependent Settings
The compiler dependent settings necessary to use this software module are described in this section. The
specific settings for the LLVM compiler are shown in section 4.3.1 below.

4.3.1 Using LLVM for RISC-V
This section describes how to use LLVM for RISC-V as the compiler.

For the linker setting, it is necessary to edit the linker settings file generated by e2 studio.

4.3.1.1 Programming Code Flash from RAM
This section describes addition of linker settings and placement of programs that operate during code flash
re-writing.

1. Add a setting in the linker settings file (linker_script.ld).

(1) From Project Explorer, right-click the linker settings file (linker_script.ld), and select “Open”.

(2) On the linker_script.id window, click the “linker_script_id” tab.

(3) Add in the linker settings file (linker_script.ld).

 RPFRAM :
 {
 _RPFRAM_start = .;
 *(PFRAM)
 . = ALIGN(4);
 _RPFRAM_end = .;
 } >RAM AT>ROM
PROVIDE(__PFRAM_start = LOADADDR(RPFRAM));
PROVIDE(__PFRAM_end = __PFRAM_start + SIZEOF(RPFRAM));

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 44 of 47
Mar.23.24

(4) When rewriting code flash in non-blocking mode, an interrupt vector table must be relocated in RAM.
Add the following settings to the linker configuration file(linker_script.ld).

.rpfram_vect 0x20004000 (NOLOAD) : AT(0x20004000)
{
 _rpfram_vect_start = .;
 *(.rpfram_vect)
 _rpfram_vect_end = .;
} > RAM

.data : AT(__mdata)

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 45 of 47
Mar.23.24

2. Programs that operate during code flash reprogramming such as interrupt callback function, etc. need to
be placed in a FRAM section by specifying the FRAM section for each function.
__attribute__((section(“PFRAM”)))
/* Function that operates during code flash re-writing */
void func(void){…}

__attribute__((section(“PFRAM”)))
/* Callback function that operates during code flash re-writing */
void cb_func(void){…}

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 46 of 47
Mar.23.24

5. Website and Support
Visit the following URLs to learn about key elements of the RISC-V MCU family, download components and
related documentation, and get support:

RISC-V MCU Product Information www.renesas.com/risc-v
RISC-V MCU Product Support Forum https://community.renesas.com/risc-v/forum
RISC-V MCU Videos
Renesas Support

www.renesas.com/risc-v/videos
www.renesas.com/support

http://www.renesas.com/risc-v
https://community.renesas.com/risc-v/forum
http://www.renesas.com/risc-v/videos
http://www.renesas.com/support

RISC-V MCU Renesas Flash Driver

R01AN7247EJ0100 Rev.1.00 Page 47 of 47
Mar.23.24

Revision History

Rev. Date
Description
Page Summary

1.00 Mar.23.24 — Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Flash Module Overview
	1.1.1 Flash Types Overview
	1.1.2 Supported Features

	1.2 API Overview
	1.3 Limitations
	1.3.1 Flash Memory Access Restrictions
	1.3.2 Clock limitation when reprogramming the flash memory

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.9.1 Definitions
	2.9.2 Definitions of Flash Memory Functionality and Capacity

	2.10 Return Values
	2.11 Callback Function
	2.12 Adding the Software Integration System (SIS) to Your Project
	2.13 Blocking Mode and Non-blocking Mode
	2.13.1 Using in Blocking Mode
	2.13.2 Using in Non-blocking Mode

	2.14 Region Protection via Access Windows
	2.14.1 Access Window-based Region Protection

	2.15 Usage Combined with Existing User Projects
	2.16 Reprogramming Flash Memory
	2.16.1 Reprogramming Code Flash Memory by Running Code on the RAM

	3. API Functions
	3.1 R_FLASH_Open()
	3.2 R_FLASH_Close()
	3.3 R_FLASH_Erase()
	3.4 R_FLASH_BlankCheck()
	3.5 R_FLASH_Write()
	3.6 R_FLASH_Control()

	4. Appendices
	4.1 Confirmed Operation Environment
	4.2 Troubleshooting
	4.3 Compiler-Dependent Settings
	4.3.1 Using LLVM for RISC-V
	4.3.1.1 Programming Code Flash from RAM

	5. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

