
 Application Note

R01AN7188EJ1000 Rev.1.00 Page 1 of 41
Apr.18.24

RL78 Family
PMBus Master Module Software Integration System

Introduction
This application note describes the PMBus Master module.

Target Device
RL78/G24

Related Documents
・RL78/G24 User's Manual: Hardware (R01UH0961J)

・PMBus Specification Rev. 1.4 Part I

・PMBus Specification Rev. 1.4 Part II

・System Management Bus (SMBus) Specification Version 3.2

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 2 of 41
Apr.18.24

Contents

1. Overview ... 4
1.1 PMBus Master Driver (PMBMDRV) Features ... 4
1.1.1 Bus Communication Features ... 4
1.1.2 Communication Error Detection .. 5
1.1.3 Optional Pin Features .. 5
1.2 PMBus Master Controller (PMBMCTL) Features .. 6
1.2.1 Communication Formats ... 6
1.2.2 Send/Receive Completion Notification .. 9
1.2.3 Fault Detection and User Notification .. 9
1.2.4 Reporting to the Controller .. 10
1.2.5 H/W Signal Information ... 10

2. API Information .. 11
2.1 Hardware Requirements .. 11
2.2 Software Requirements ... 11
2.3 Supported Tool Chains .. 12
2.4 Header files .. 12
2.5 Integer Type .. 12
2.6 Code Size .. 12

3. Configuration Specifications .. 13

4. API Specification ... 14
4.1 API Typedef Definitions (PMBus Master Controller) ... 14
4.1.1 pmbmctl_ret_t .. 14
4.1.2 pmbmctl_fault_t ... 15
4.1.3 pmbmctl_polarity_t .. 16
4.1.1 pmbmctl_data_t ... 16
4.1.1 pmbmctl_callback_t ... 17
4.1.2 pmbmctl_hw_signal_t .. 18
4.2 API Function Specifications (PMBus Master Controller) ... 19
4.2.1 RM_PMBMCTL_Open .. 19
4.2.2 RM_PMBMCTL_Close .. 20
4.2.3 RM_PMBMCTL_GetHWSignal ... 21
4.2.4 RM_PMBMCTL_SendCommand .. 22
4.2.1 RM_PMBMCTL_WriteData ... 23
4.2.2 RM_PMBMCTL_ReadData ... 24
4.2.3 RM_PMBMCTL_WriteReadData ... 25
4.2.4 RM_PMBMCTL_SendAlertResponse ... 26
4.2.5 RM_PMBMCTL_SetPolarityControlPin ... 27
4.2.6 RM_PMBMCTL_SetControl .. 28
4.3 API Typedef Definitions (PMBus Master Driver) ... 29
4.4 API Function Specifications (PMBus Master Driver) ... 30

5. Operation Sequence .. 32

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 3 of 41
Apr.18.24

5.1.1 Send Byte .. 32
5.1.2 Write Byte/Word, Write 32 protocol, Write 64 protocol.. 33
5.1.3 Read Byte/Word, Read 32 protocol, Read 64 protocol ... 34
5.1.4 Block Write .. 35
5.1.5 Block Read .. 36
5.1.6 Block Write-Block Read Process Call ... 37
5.1.7 SMBALERT# ... 38
5.1.8 SMBus Host Notify .. 39

6. Website and Support ... 40

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 4 of 41
Apr.18.24

1. Overview
This module consists of a driver layer (PMBus Master Driver) and a middleware layer (PMBus Master
Controller) and provides an interface for sending and receiving data via PMBus (Power Management Bus)
communication.

Figure 1-1 Module Configurations

1.1 PMBus Master Driver (PMBMDRV) Features
The PMBus Master Driver is intended to be accessed from the middleware layer (PMBus Master Controller).

The PMBus Master Driver provides the following features as the driver layer of the PMBus Master module.

1.1.1 Bus Communication Features
PMBus master send and receive operation is performed using the serial interface IICA.

(1) Bus speed

100 kHz, 400 kHz, and 1 MHz can be set with the Smart Configurator.

Note:

 When 1MHz is set, a level shifter must be provided in an external circuit.

(2) Serial bus communication

The following communication operations are performed using Microcontroller's serial interface IICA.

 Generate Start condition

 Generate Repeat Start condition

 Send and receive data

 Generate Stop Condition

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 5 of 41
Apr.18.24

(3) Notification to upper layers

Notification is sent to upper layers at the following timing.

 Sending completed

 Receiving completed

 Communication error detection (Details are explained in the next chapter.)

1.1.2 Communication Error Detection
The PMBus Master module's driver layer detects the following communication errors and notifies the upper
layers.

(1) NACK detection

When NACK is detected during data sending to a slave, it is judged as NACK detection.

(2) Communication timeout

Byte data reception timing is monitored during communication transactions, and when the reception interval
is 25 ms or longer, communication timeout is considered to have occurred. Byte data receive timing
monitoring is achieved by detecting INTIICA0 interrupts. This enables detection of a Low fixation state on the
SCLA0 line.

1.1.3 Optional Pin Features
The following optional terminal ports can be assigned in the Smart Configurator.

(1) Control Signal (CONTROL)

The CONTROL pin is an optional input pin; it is used in conjunction with the PMBus command to turn the
device on or off. The active level of the pin can also be set by the PMBus command.

(2) SMBALERT#

The SMBALERT# pin is an optional output pin. It is used as an interrupt line from the slave to the master.

Note:

The electrical characteristics of these pins follow those described in the "RL78/G24 User's Manual:
Hardware". To comply with the electrical characteristics described in the SMBus specifications, it is
necessary to use external circuits.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 6 of 41
Apr.18.24

1.2 PMBus Master Controller (PMBMCTL) Features
The PMBus Master Controller is intended to be accessed by user applications.

As the middleware layer of the PMBus Master module, it provides the following features

1.2.1 Communication Formats
Upon receiving a command code transmission request from the user application, a data send request is
made to PMBMDRV when a start condition is generated, and a data receive request is made to PMBMDRV
when a repeat start condition is generated. The communication formats supported by this module and their
protocol diagrams are described below.

Protocol diagram legend:

S : Start Condition

Sr : Repeat Start Condition

Rd : Read (1)

Wr : Write (0)

ACK : Acknowledge

NACK : Not Acknowledge

PEC : Packet Error Code *PEC support is optional

P : Stop Condition

: Master → Slave

: Slave → Master

(1) Send Byte

Command code is sent to any target address.

Figure 1-2 Communication Format Send Byte

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 7 of 41
Apr.18.24

(2) Write Byte/Word, Write 32 protocol, Write 64 protocol

Command code and corresponding write data are sent to any target address.

Figure 1-3 Communication Format Write (Single byte)

Figure 1-4 Communication Format Write (Multi byte)

(3) Read Byte/Word, Read 32 protocol, Read 64 protocol

Command code is sent to any target address. Next, the response data corresponding to the command code
is read from the device.

Figure 1-5 Communication Format Read (Single byte)

Figure 1-6 Communication Format Read (Multi byte)

(4) Block Write

Command code and corresponding write data are sent to any target address. Before sending write data,
data (Byte Count) indicating the data length is sent.

Figure 1-7 Communication Format Block Write

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 8 of 41
Apr.18.24

(5) Block Read

Command code is sent to any target address. Next, the response data corresponding to the command code
is read from the device. Before sending the response data, the device sends data (Byte Count) indicating the
data length.

Figure 1-8 Communication Format Block Read

(6) Block Write-Block Read Process Call

The Block Write and Block Read described above are executed in the same transaction. Write data length
(Byte Count M) and response data length (Byte Count N) may differ.

Figure 1-9 Communication Format Block Write-Block Read Process Call

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 9 of 41
Apr.18.24

1.2.2 Send/Receive Completion Notification
Notifies the user of the completion of sending a command when it has been sent according to the
communication format described above.

(1) Notification of completion of sending Send command

Notifies the user of the completion of sending in the Send Byte communication format by a callback.

(2) Notification of completion of sending Write data

Notifies the user of the completion of sending in Write Byte/Word, Write 32 protocol, Write 64 protocol
communication format or Block Write communication format by a callback.

(3) Notification of completion of Read data reception

Notifies the user of received data via callback upon completion of sending in Read Byte/Word, Read 32
protocol, Read 64 protocol communication format or Block Read communication format.

(4) Notification of completion of sending Write/Read data

Notifies the user of received data via callback upon completion of sending in the Block Write-Block Read
Process Call communication format.

(5) Notification of completion of sending AlertResponseAddress

Notifies the user of the device address received upon completion of sending in the Device responds to an
ARA communication format by a callback.

(6) Notification of completion of HostNotify reception

Notifies the user of the received device address and error information (STATUS_WORD) via callback upon
completion of reception in the Host Notify communication format.

1.2.3 Fault Detection and User Notification
This feature detects each failure that occurs during data communication and notifies the user via a callback.
For details, see chapter 4.1.2 pmbmctl_fault_t.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 10 of 41
Apr.18.24

1.2.4 Reporting to the Controller
PMBus devices must notify the controller (master) of a warning or fault condition when an anomaly is
detected. This module provides the following two features for notification; the PMBus specification specifies
that at least one of these two methods must be supported.

(1) Notification by SMBALERT#signal

PMBus devices can generate an alert signal from the SMBALERT#pin. The user can call the API function
"RM_PMBMCTL_GetHWSignal" to obtain the signal status of the SMBALERT#pin. To identify the device that
is the source of the notification, the API function "RM_PMBMCTL_SendAlertResponse" can be called to
request a read request to the SMBus Alert Response Address. This request is then sent to the PMBus device.
The PMBus device will respond with its own station address value.

Figure 1-10 Communication format Device responds to an ARA

(2) Notification by SMBus Host Notify Protocol

PMBus devices can notify device addresses and error information (STATUS_WORD) via the SMBus Host
Notify protocol. The user can obtain the device address and error information (STATUS_WORD) through the
HostNotify receipt completion notification described above.

Figure 1-11 Communication format Host Notify

1.2.5 H/W Signal Information
The user can call the API function "RM_PMBMCTL_GetHWSignal" to obtain the signal levels of the following
optional pins.

 Control Signal (CONTROL)

 SMBALERT#

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 11 of 41
Apr.18.24

2. API Information
This section describes the API information for this module.

2.1 Hardware Requirements

The MCU to be used must support the following pins

 SCLA0 (P60)

 SDAA0 (P61)

Target products: 30, 32, 40, 44, 48, 52, 64-pin products

2.2 Software Requirements

This driver depends on the following modules

 Board Support Package (r_bsp) v1.61 or later

In addition, the following API functions of r_bsp must be enabled, which can be configured from the Software
Component Settings screen on the Smart Configurator.

 R_BSP_GetFclkFreqHz

(BSP_CFG_GET_FREQ_API_FUNCTIONS_DISABLE = 0)

Figure 2-1 Smart Configurator BSP Settings

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 12 of 41
Apr.18.24

2.3 Supported Tool Chains

This module has been tested with the following toolchains.

 Renesas CC-RL Toolchain v1.12.01

 IAR Embedded Workbench for Renesas RL78 v5.10.3

2.4 Header files

API calls and I/F definitions used are described in "rm_pmbmctl_api.h" and "rm_pmbmdrv_api.h".

2.5 Integer Type

This driver uses ANSI C99. These types are defined in "stdint.h".

2.6 Code Size

ROM and RAM sizes increase or decrease depending on the settings on the Smart Configurator and
compiler option settings. Here, the sizes are given for reference when the settings on the Smart Configurator
are the default settings and the compile options on the CC-RL compiler are set to the default settings.

ROM : 4,720 [byte]

RAM : 1,377 [byte]

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 13 of 41
Apr.18.24

3. Configuration Specifications
A list of configuration items that can be set in the Smart Configurator is shown below.

Table 3.1 PMBus Master Driver setting items list

Item Possible values Description
Bus Speed 100kHz, 400kHz、1MHz Specify the bus speed.

IICA Input Mode I2C, SMBus Specify the IICA input mode.

SDAA and SCLA signal

falling times (tF)[ns]

0 to 300 Set the fall time of the SDAA and SCLA

signals. (Note1)

SDAA and SCLA signal

rising times (tR)[ns]

0 to 1000 Set the rise time of the SDAA and SCLA

signals. (Note1)

Digital filter ON, OFF Specify whether the digital filter is enabled

or not. (Note2)

Interrupt level for INTIICA0 Level 0(Highest),

Level 1,

Level 2,

Level 3(Lowest)

Set the INTIICA0 interrupt priority.

Pin for Control Signal Unused,
P00 to P147

Select the Control Signal pin.

Pin for SMBALERT# Unused,

P00 to P147

Select the SMBALERT#pin.

Timer resource for device

timeout measurement

TAU0_0,

TAU0_1,

TAU0_2,

TAU0_3

Select the Timed Source for measuring

device timeout.

Host Notify Supported Supported,

Not Supported
Select whether SMBus Host Notify is

supported.

Note1. Set tF and tR according to the user's hardware environment.

Note2. When fCLK is 48 MHz, the filter width of the digital filter is 41.67 ns. To obtain a filter width of 50 ns
or more, set fCLK to 32 MHz or lower or use an external noise filter.

Table 3.2 PMBus Master Controller setting items list
Item Possible values Description

Support the SMBus Packet

Error Checking (PEC)

Supported,

Not Supported

Select whether to support PEC.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 14 of 41
Apr.18.24

4. API Specification

4.1 API Typedef Definitions (PMBus Master Controller)
This section describes the Typedef definition provided by the middleware layer of this module.

4.1.1 pmbmctl_ret_t

This typedef defines the return value of the function requesting the sending of the command code from the
user.
typedef enum

{

PMBMCTL_RTN_OK,

PMBMCTL_RTN_CMD_NOT_SUPPORTED,

PMBMCTL_RTN_DATA_LENGTH_NG

PMBMCTL_RTN_SENDING

} pmbmctl_ret_t;

Description
Use as the return value of the command code sending request function.

(a) PMBMCTL_RTN_OK

When a request for sending a command code can be accepted.

(b) PMBMCTL_RTN_CMD_NOT_SUPPORTED

When a command specified by the user is an unsupported command

(c) PMBMCTL_RTN_DATA_LENGTH_NG

When a data length specified by the user is an invalid value

(d) PMBMCTL_RTN_SENDING

When a previous command code sending is in progress.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 15 of 41
Apr.18.24

4.1.2 pmbmctl_fault_t

This typedef defines the fault information to be notified by the user callback function "FaultNotification".
typedef enum

{

PMBMCTL_FAULT_PEC,

PMBMCTL_FAULT_DATA_LENGTH,

PMBMCTL_FAULT_COMMUNICATION

} pmbmctl_fault_t;

Description
Used as fault information to be notified by the FaultNotification callback function.

(a) PMBMCTL_FAULT_PEC

Notified when a PEC error is detected.

(b) PMBMCTL_FAULT_DATA_LENGTH

Notified when there is a mismatch between the data received from the PMBus device and the Byte
Count in the Block Read and Block Write-Block Read Process Call.

(c) PMBMCTL_FAULT_COMMUNICATION

Notified when PMBMDRV detects a communication error as described above.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 16 of 41
Apr.18.24

4.1.3 pmbmctl_polarity_t

This typedef defines the active level of the Control pin.
typedef enum

{

PMBMCTL_POLARITY_ACTIVE_LO,

PMBMCTL_POLARITY_ACTIVE_HI,

} pmbmctl_polarity_t;

Description
Use the API function "RM_PMBMCTL_SetPolarityControlPin" to set the active level of the Control pin.

4.1.1 pmbmctl_data_t

This typedef defines the data structures that are sent and received via PMBus communication.
typedef struct

{

uint8_t data_length;

uint8_t * p_data;

} pmbmctl_data_t;

Description
Used for notification of incoming data and setting of sending data by the user callback function.

(a) data_length

Indicates data length [bytes].

(b) p_data

Indicates the initial address of the array variable in which the receiving or sending data is stored.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 17 of 41
Apr.18.24

4.1.1 pmbmctl_callback_t

This typedef defines a user callback function structure.
typedef struct

{

void (* SendCommandSended)(void);

 void (* WriteDataSended)(void);

 void (* ReadDataSended)(pmbmctl_data_t rdata);

 void (* WriteReadDataSended)(pmbmctl_data_t rdata);

 void (* AlertResponseSended)(uint8_t device_address);

 void (* HostNotifyReceived)(uint8_t device_address, uint16_t status_word);

 void (* FaultNotification)(pmbmctl_fault_t fault);

} pmbmctl_callback_t;

Description
Register the callback function by storing the user function pointer in this structure and passing it as an
argument when calling the API function "RM_PMBMCTL_Open". The callback function will notify the user at
each event timing.

(a) SendCommandSended

Notifies at the timing of completion of sending in Send Byte communication format.

(b) WriteDataSended

Notifies at the timing of the completion of sending in Write Byte/Word, Write 32 protocol, Write 64
protocol communication format or Block Write communication format.

(c) ReadDataSended

Notifies when sending is completed in Read Byte/Word, Read 32 protocol, Read 64 protocol
communication format or Block Read communication format. The received data is passed as an
argument.

(d) WriteReadDataSended

Notifies at the completion of sending in Block Write-Block Read Process Call communication format.
The received data is passed as an argument.

(e) AlertResponseSended

Notifies at the timing of the completion of sending in the Device responds to an ARA communication
format. The received device address is passed as an argument.

(f) HostNotifyReceived

Notifies at the timing of the completion of reception in Host Notify communication format. The
received device address and error information (STATUS_WORD) are passed as arguments.

(g) FaultNotification

Notifies at the timing of Fault detection. The detected fault information is passed as an argument; see
4.1.2 pmbmctl_fault_t for details on fault information.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 18 of 41
Apr.18.24

4.1.2 pmbmctl_hw_signal_t

This typedef defines the H/W signal structure.
typedef struct

{

bool control;

bool smbalert;

} pmbmctl_hw_signal_t;

Description
It is used as the return value of the API function "RM_PMBMCTL_GetHWSignal". Each H/W signal
information is defined as a member of the structure.

(a) control

true : Device ON

false : Device OFF

(b) smbalert

true : SMBALERT#signal is being asserted

false : SMBALERT#signal is being negated

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 19 of 41
Apr.18.24

4.2 API Function Specifications (PMBus Master Controller)
This section describes the API function specifications provided by the middleware layer of this module.

4.2.1 RM_PMBMCTL_Open

This function initializes the module and starts the PMBus communication feature.

Format
void RM_PMBMCTL_Open(const pmbmctl_callback_t * p_callback_set)

Parameters
p_callback_set

Pointer to user callback function structure

Return Values
None

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Initializes the driver and middleware layers and starts the PMBus communication feature. It also registers
the user callback function passed as an argument.

Example
/** User function */

static void r_cbk_send_command_sended(void);

static void r_cbk_write_data_sended(void);

static void r_cbk_read_data_sended(pmbmctl_data_t rdata);

static void r_cbk_write_read_data_sended(pmbmctl_data_t rdata);

static void r_cbk_alert_response_sended(uint8_t device_address);

static void r_cbk_host_notify_received(uint8_t device_address, uint16_t status_word);

static void r_cbk_fault_notification(pmbmctl_fault_t fault);

/** Callback function set */

static pmbmctl_callback_t gs_pmbmctl_cbk;

 . . .

/** User Init */

gs_pmbmctl_cbk.SendCommandSended = r_cbk_send_command_sended;

gs_pmbmctl_cbk.WriteDataSended = r_cbk_write_data_sended;

gs_pmbmctl_cbk.ReadDataSended = r_cbk_read_data_sended;

gs_pmbmctl_cbk.WriteReadDataSended = r_cbk_write_read_data_sended;

gs_pmbmctl_cbk.AlertResponseSended = r_cbk_alert_response_sended;

gs_pmbmctl_cbk.HostNotifyReceived = r_cbk_host_notify_received;

gs_pmbmctl_cbk.FaultNotification = r_cbk_fault_notification;

RM_PMBMCTL_Open(gs_pmbmctl_cbk);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 20 of 41
Apr.18.24

4.2.2 RM_PMBMCTL_Close

This function performs the module shutdown process and terminates the PMBus communication feature.

Format
void RM_PMBMCTL_Close(void)

Parameters
None

Return Values
None

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Stops the driver layer and middleware layer and terminates the PMBus communication feature.

Example
 /** Terminate PMBus communication */

 RM_PMBMCTL_Close();

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 21 of 41
Apr.18.24

4.2.3 RM_PMBMCTL_GetHWSignal

This function obtains H/W signal information.

Format
pmbmctl_hw_signal_t RM_PMBMCTL_GetHWSignal(void)

Parameters
None

Return Values
H/W Signal Information

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Obtain the following H/W signal information.

・Control Signal input status

・SMBALERT#output status

Example
 static pmbmctl_hw_signal_t gs_hw_signal;

 /* get H/W signal */

 gs_hw_signal = RM_PMBMCTL_GetHWSignal();

if (gs_hw_signal.control == true)

{

 . . .

}

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 22 of 41
Apr.18.24

4.2.4 RM_PMBMCTL_SendCommand

This function requests sending the command code in Send Byte communication format.

Format
pmbmctl_ret_t RM_PMBMCTL_SendCommand(uint8_t address, uint8_t command)

Parameters
address

Destination address
command

command

Return Values
Result of accepting a request for sending

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Send command code in the Send Byte communication format.

Example
/** Set address */

address = . . .

/** Set command */

command = . . .

/** SendCommand Request */

rtn_value = RM_PMBMCTL_SendCommand(address, command);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 23 of 41
Apr.18.24

4.2.1 RM_PMBMCTL_WriteData

This function requests sending the command code in Write Byte/Word, Write 32 protocol, or Write 64
protocol communication format.

Format
pmbmctl_ret_t RM_PMBMCTL_WriteData(uint8_t address, uint8_t command,

pmbmctl_data_t wdata)

Parameters
address

Destination address
command

command
wdata

sending data

Return Values
Result of accepting a request for sending

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Send command codes in Write Byte/Word, Write 32 protocol, and Write 64 protocol communication
formats.

Example
/** Set address */

address = . . .

/** Set command */

command = . . .

/** Set send data */

wdata.data_length = . . .

wdata.p_data = . . .

/** WriteData Request */

rtn_value = RM_PMBMCTL_WriteData(address, command, wdata);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 24 of 41
Apr.18.24

4.2.2 RM_PMBMCTL_ReadData

This function requests sending the command code in Read Byte/Word, Read 32 protocol, or Read 64
protocol communication format.

Format
pmbmctl_ret_t RM_PMBMCTL_ReadData(uint8_t address, uint8_t command,

 uint8_t rdata_length)

Parameters
address

Destination address
command

command
rdata_length

Receive data length

Return Values
Result of accepting a request for sending

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Send command codes in Read Byte/Word, Read 32 protocol, and Read 64 protocol communication
formats.

Example
/** Set address */

address = . . .

/** Set command */

command = . . .

/** Set data length */

rdata_length = . . .

/** ReadData Request */

rtn_value = RM_PMBMCTL_ReadData(address, command, rdata_length);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 25 of 41
Apr.18.24

4.2.3 RM_PMBMCTL_WriteReadData

This function requests sending the command code in the WriteReadDataSended communication format.

Format
pmbmctl_ret_t RM_PMBMCTL_WriteReadData(uint8_t address, uint8_t command,

pmbmctl_data_t wdata,

uint8_t rdata_length)

Parameters
address

Destination address
command

command
wdata

sending data
rdata_length

Receive data length

Return Values
Result of accepting a request for sending

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Send command codes in WriteReadDataSended communication format.

Example
/** Set address */

address = . . .

/** Set command */

command = . . .

/** Set send data */

wdata.data_length = . . .

wdata.p_data = . . .

/** Set data length */

rdata_length = . . .

/** WriteReadData Request */

rtn_value = RM_PMBMCTL_WriteReadData(address, command, wdata, rdata_length);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 26 of 41
Apr.18.24

4.2.4 RM_PMBMCTL_SendAlertResponse

This function requests sending the command code in Device responds to an ARA communication format.

Format
pmbmctl_ret_t RM_PMBMCTL_SendAlertResponse(void)

Parameters
None

Return Values
Result of accepting a request for sending

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Send a command code in the Device responds to an ARA communication format.

Example
static pmbmctl_hw_signal_t gs_hw_signal;

 /* get H/W signal */

 gs_hw_signal = RM_PMBMCTL_GetHWSignal();

if (gs_hw_signal. smbalert == true)

{

 /** Alert Response Request */

rtn_value = RM_PMBMCTL_SendAlertResponse(void);

}

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 27 of 41
Apr.18.24

4.2.5 RM_PMBMCTL_SetPolarityControlPin

This function sets the polarity of the Control Signal input pin.

Format
void RM_PMBMCTL_SetPolarityControlPin (pmbmctl_polarity_t active_level)

Parameters
active_level

Control Signal pin active level

Return Values
None

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Set the polarity of the Control Signal input terminal, corresponding to the terminal polarity setting by the
ON_OFF_CONFIG command of the PMBus specification.

Example
 /** Set active level of the Control Signal pin */

 RM_PMBMCTL_SetPolarityControlPin(PMBMCTL_POLARITY_ACTIVE_HI);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 28 of 41
Apr.18.24

4.2.6 RM_PMBMCTL_SetControl

This function sets the Control signal level.

Format
void RM_PMBMCTL_SetControl(bool control_level)

Parameters
control_level

true : Activate Control signal

false : Deactivate Control signal

Return Values
None

Properties
Prototype declared in rm_pmbmctl_api.h.

Description
Set the Control signal level.

Example
 /** Set Control Signal pin level */

 RM_PMBMCTL_SetControl(true);

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 29 of 41
Apr.18.24

4.3 API Typedef Definitions (PMBus Master Driver)
This section describes the Typedef definition provided by the driver layer of this module. Since the driver
layer is basically assumed to be accessed from PMBus Master Controller (middleware layer), users do not
need to be particularly aware of it, but it is provided here for reference.

Table 4.1 PMBMDRV port-level enumerated type (pmbmdrv_port_lv_t)

Macro Macro Value Description

PMBMDRV_PORT_LO 0 Port Lo level

PMBMDRV_PORT_HI 1 Port Hi level

PMBMDRV_PORT_NOTSUPPORTED 2 Not supported

Table 4.2 PMBMDRVerror-notification enumeration type (pmbmdrv_err_t)

Macro Macro Value Description

PMBMDRV_ERR_NACK 0 NACK detection

PMBMDRV_ERR_TIMEOUT 1 Timeout detection

Table 4.3 PMBMDRVcall-back structure (pmbmdrv_callback_t)

Type Function Pointer Name Arguments Description

void ReceiveByteData uint8_t data Data Receiving Notification

void SendDataEnd bool stp_cond Sending Completion Notification

void ReceiveDataEnd void Receiving Completion Notification

void ErrorNotification pmbmdrv_err_t error Error Detection Notification

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 30 of 41
Apr.18.24

4.4 API Function Specifications (PMBus Master Driver)
This section describes the API function specifications provided by the driver layer of this module. Since the
driver layer is basically assumed to be accessed from PMBus Master Controller (middleware layer), users do
not need to be particularly aware of it, but it is provided here as reference information.

Table 4.4 R_PMBMDRV_Open

Function
name

R_PMBMDRV_Open Initialize I2C features and start PMBus
communication.

Arguments const pmbmdrv_callback_t *
 p_callback_set

Pointer to register callback function to upper
layer module

Return
value

- -

Table 4.5 R_PMBMDRV_Close

Function
name

R_PMBMDRV_Close Stop the I2C feature and terminate PMBus
communication.

Arguments - -

Return
value

- -

Table 4.6 R_PMBMDRV_SendData

Function
name

R_PMBMDRV_SendData Send data to the slave.

Arguments uint8_t address Destination address

Arguments uint8_t *tx_buf Pointer to sending data

Arguments uint8_t tx_num Length of sent data

Arguments bool sp_flg Stop Condition Request Flag

Return
value

- -

Table 4.7 R_PMBMDRV_ReceiveData

Function
name

R_PMBMDRV_ReceiveData Receive data from the slave.

Arguments uint8_t address Destination address

Arguments uint8_t *rx_buf Pointer to received data

Arguments uint8_t rx_num Length of received data

Arguments - -

Return
value

Table 4.8 R_PMBMDRV_GetControlLevel

Function
name

R_PMBMDRV_GetControlLevel Get the input level of the Control Pin.

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 31 of 41
Apr.18.24

Arguments - -

Return
value

pmbmdrv_port_lv_t level Port level

Table 4.9 R_PMBMDRV_SetControlLevel

Function
name

R_PMBMDRV_SetControlLevel Set the output level of the Control Pin.

Arguments pmbmdrv_port_lv_t level Port level

Return
value

- -

Table 4.10 R_PMBMDRV_SetSMBALertLevel

Function
name

R_PMBMDRV_SetSMBALertLevel Set the output level of the SMBALERT#pin.

Arguments PMBMDRV_port_lv_t level Port level

Return
value

- -

Table 4.11 R_PMBMDRV_SetResponseData

Function
name

R_PMBMDRV_SetResponseData Set the response data to the master.

Arguments uint8_t data_length Length of sending data

Arguments uint8_t *p_data Pointer to sending data

Return
value

- -

Table 4.12 R_PMBMDRV_SendData

Function
name

R_PMBMDRV_SendData Send any data. (Master sending)

Arguments uint8_t dest Destination address

Arguments uint8_t data_length Length of sending data

Arguments uint8_t *p_data Pointer to sending data

Return
value

- -

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 32 of 41
Apr.18.24

5. Operation Sequence
Sequence diagrams for sending command codes and notifying the user for each communication format, as
well as for requesting a read to the SMBus Alert Response Address, are shown below.

5.1.1 Send Byte

Figure 5-1 Send Byte sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 33 of 41
Apr.18.24

5.1.2 Write Byte/Word, Write 32 protocol, Write 64 protocol

Figure 5-2 Write sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 34 of 41
Apr.18.24

5.1.3 Read Byte/Word, Read 32 protocol, Read 64 protocol

Figure 5-3 Read sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 35 of 41
Apr.18.24

5.1.4 Block Write

Figure 5-4 Block Write sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 36 of 41
Apr.18.24

5.1.5 Block Read

Figure 5-5 Block Read sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 37 of 41
Apr.18.24

5.1.6 Block Write-Block Read Process Call

Figure 5-6 Block Write-Block Read Process sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 38 of 41
Apr.18.24

5.1.7 SMBALERT#

Figure 5-7 SMBALERT# sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 39 of 41
Apr.18.24

5.1.8 SMBus Host Notify

Figure 5-8 SMBus Host Notify sequence

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 40 of 41
Apr.18.24

6. Website and Support
Renesas Electronics Website

http://www.renesas.com/

Contact information

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

RL78 Family PMBus Master Module Software Integration System

R01AN7188EJ1000 Rev.1.00 Page 41 of 41
Apr.18.24

Revision History

Rev. Date
Description

Page Summary
1.00 Apr.18, 2024 - First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 PMBus Master Driver (PMBMDRV) Features
	1.1.1 Bus Communication Features
	(1) Bus speed
	(2) Serial bus communication
	(3) Notification to upper layers

	1.1.2 Communication Error Detection
	(1) NACK detection
	(2) Communication timeout

	1.1.3 Optional Pin Features
	(1) Control Signal (CONTROL)
	(2) SMBALERT#

	1.2 PMBus Master Controller (PMBMCTL) Features
	1.2.1 Communication Formats
	(1) Send Byte
	(2) Write Byte/Word, Write 32 protocol, Write 64 protocol
	(3) Read Byte/Word, Read 32 protocol, Read 64 protocol
	(4) Block Write
	(5) Block Read
	(6) Block Write-Block Read Process Call

	1.2.2 Send/Receive Completion Notification
	(1) Notification of completion of sending Send command
	(2) Notification of completion of sending Write data
	(3) Notification of completion of Read data reception
	(4) Notification of completion of sending Write/Read data
	(5) Notification of completion of sending AlertResponseAddress
	(6) Notification of completion of HostNotify reception

	1.2.3 Fault Detection and User Notification
	1.2.4 Reporting to the Controller
	(1) Notification by SMBALERT#signal
	(2) Notification by SMBus Host Notify Protocol

	1.2.5 H/W Signal Information

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Tool Chains
	2.4 Header files
	2.5 Integer Type
	2.6 Code Size

	3. Configuration Specifications
	4. API Specification
	4.1 API Typedef Definitions (PMBus Master Controller)
	4.1.1 pmbmctl_ret_t
	4.1.2 pmbmctl_fault_t
	4.1.3 pmbmctl_polarity_t
	4.1.1 pmbmctl_data_t
	4.1.1 pmbmctl_callback_t
	4.1.2 pmbmctl_hw_signal_t

	4.2 API Function Specifications (PMBus Master Controller)
	4.2.1 RM_PMBMCTL_Open
	4.2.2 RM_PMBMCTL_Close
	4.2.3 RM_PMBMCTL_GetHWSignal
	4.2.4 RM_PMBMCTL_SendCommand
	4.2.1 RM_PMBMCTL_WriteData
	4.2.2 RM_PMBMCTL_ReadData
	4.2.3 RM_PMBMCTL_WriteReadData
	4.2.4 RM_PMBMCTL_SendAlertResponse
	4.2.5 RM_PMBMCTL_SetPolarityControlPin
	4.2.6 RM_PMBMCTL_SetControl

	4.3 API Typedef Definitions (PMBus Master Driver)
	4.4 API Function Specifications (PMBus Master Driver)

	5. Operation Sequence
	5.1.1 Send Byte
	5.1.2 Write Byte/Word, Write 32 protocol, Write 64 protocol
	5.1.3 Read Byte/Word, Read 32 protocol, Read 64 protocol
	5.1.4 Block Write
	5.1.5 Block Read
	5.1.6 Block Write-Block Read Process Call
	5.1.7 SMBALERT#
	5.1.8 SMBus Host Notify

	6. Website and Support
	Contact information
	Corporate Headquarters
	Trademarks

