8V97052

High Resolution Wideband RF Synthesizer / PLL

The 8V97052 is a high-performance wide-band RF synthesizer / PLL that offers a high resolution of 32-bit fractional and modulus. It is ideal for use in instrumentation, test equipment, satellite equipment, or applications that require very fine adjustments of the output frequency. It is also optimal for use as a traditional Local Oscillator (LO) in Multi-Carrier, Multimode FDD, and TDD Base Station radio card.

The 8V97052 offers an integrated Voltage Controlled Oscillator (VCO) and output divider that supports a continuous output frequency range of 34.375 MHz to 4400 MHz . This large frequency tuning range can provide multi-band local oscillator (LO) frequency synthesis, thus, limiting the use of multiple narrow band RF synthesizers and reducing the BOM complexity and cost. The RF_OUT output driver has an independently programmable output power ranging from -4 dBm to +11.5 dBm . The RF_OUT output can be muted via a SPI command or mute pin. Integrated low noise Low Dropout Regulators (LDOs) are used for superior power supply noise immunity. The operation of the 8V97052 is controlled by writing to registers through a 3-wire SPI interface. The device also has an option that allows users to read back values from registers by configuring the MUX_OUT pin as a SDO for the SPI interface. The SPI interface is compatible with 1.8 V logic and tolerant to 3.3 V .

The device also includes features such as fast lock, programmable charge pump current, electable DSM types and orders, output mute, lock detection, MUX_OUT, and phase adjust that can help with specific system requirements, optimization, or power savings. In RF applications, very low noise oscillators are required to generate a large variety of frequencies to the mixers while maintaining excellent phase noise performance and low power.

Applications

- Wireless infrastructure
- Instrumentation equipment
- Test equipment
- CATV equipment
- Military and aerospace
- Wireless LAN
- Clock generation

Features

- Supports on-chip VCO or external VCO
- Single differential output with frequency range: 34.375 MHz to 4400 MHz (continuous range)
- RF output divide by $1,2,4,8,16,32,64$
- Open drain output (see Output Distribution Section)
- Fractional-N synthesizer (also supports Integer-N mode)
- 16-bit integer and 32-bit fractional/32-bit modulus
- 3- or 4-wire SPI interface (compatible with 3.3 V and 1.8 V)
- Single 3.3V supply
- Programmable output power level: -4 dBm to $+11.5 \mathrm{dBm}$
- Mute function
- Ultra low phase noise for 2 GHz LO: $-133 \mathrm{dBc} / \mathrm{Hz}$ at 1 MHz offset, (typical)
- Normalized phase noise floor: $-228 \mathrm{dBc} / \mathrm{Hz}$
- Lock detect Indicators
- Input reference frequency: 5 MHz to 310 MHz
- Power consumption: 380mW (typical)
- $5 \times 5 \mathrm{~mm}, 32-\mathrm{VFQFPN}$ package
- Automatic VCO band selection (Autocal feature)
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient operating temperature
- Supports case temperature $\leq 105^{\circ} \mathrm{C}$ operations
- Lead-free (RoHS 6) packaging

Simplified Block Diagram

Figure 1. Block Diagram

Contents

1. Pin Information 5
1.1 Pin Assignments 5
1.2 Pin Descriptions 5
2. Principles of Operation 7
2.1 Synthesizer Programming 7
2.2 Reference Input Stage 7
2.3 Reference Doubler 7
2.4 Feedback Divider 8
2.5 Phase and Frequency Detector (PFD) and Charge Pump 9
2.6 PFD Frequency 10
2.7 External Loop Filter 10
2.8 Phase Detector Polarity 10
2.9 Charge Pump High-Impedance 11
2.10 Integrated Low Noise VCO 11
2.11 RF_IN Input 11
2.12 Output Distribution Section 11
2.13 Output Matching 12
2.14 Band Selection Disable 12
2.15 Phase Adjust 12
2.16 Phase Resync 13
2.17 Fast Lock Function 13
2.18 RF Output Power 14
2.19 MUX_OUT 14
2.20 Power-Down Mode 15
2.21 Default Power-Up Conditions 15
2.22 Program Modes 15
2.23 Double Buffering 16
3. Timing Characteristics 16
4. 3- or 4-Wire SPI Interface Description 17
5. Registers 18
5.1 Register 0 18
5.2 Register 1 20
5.3 Register 2 22
5.4 Register 3 25
5.5 Register 4 26
5.6 Register 5 28
5.7 Register 6 30
5.8 Register 7 33
6. Specifications 36
6.1 Absolute Maximum Ratings 36
6.2 DC Electrical Characteristics 36
6.3 AC Electrical Characteristics 38
7. Phase Noise Plots 40
8. Applications Information 41
8.1 Loop Filter Calculations 41
8.2 2nd Order Loop Filter 41
8.3 3rd Order Loop Filter 42
8.4 Recommendations for Unused Input and Output Pins 43
8.4.1 Inputs 43
8.4.2 Outputs 43
8.5 Case Temperature Considerations 43
9. Reliability Information 44
10. Package Outline Drawings 44
11. Marking Diagram 45
12. Ordering Information 45
13. Revision History 45

1. Pin Information

1.1 Pin Assignments

1.2 Pin Descriptions

Table 1. Pin Descriptions ${ }^{[1]}$

Pin	Name	Type		Description
1	SCLK	LVCMOS input	Pull-down	Serial clock input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant.
2	SDI	LVCMOS input	Pull-up	Serial data input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant.
3	nCS	LVCMOS input	Pull-down	Load enable. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. Active low.
4	CE	LVCMOS input	Pull-up	Chip enable. On logic low, powers down the device and puts the charge pump into High-Impedance mode. Powers up the device on logic High.
5	FLSW	Analog		Fast lock switch. A connection should be made from the loop filter to this pin when using the fast lock mode.
6	V_CP	Power		Charge pump power supply. $V_{\text {CP }}$ must have the same value as $V_{\text {DDA. }}$. Place decoupling capacitors to the ground plane as close to this pin as possible.
7	CP_OUT	Analog		Charge pump output. When enabled, this output provides $\pm I C P$ to the external loop filter. The output of the loop filter is connected to $\mathrm{V}_{\text {TUNE }}$ to drive the internal VCO.
8	GND_CP	Ground		Charge pump power supply ground.
9	GNDA	Ground		VCO analog power supply ground.
10	$\mathrm{V}_{\text {DDA }}$	Power		Analog supply. This pin ranges from $3.3 \mathrm{~V} \pm 5 \%$. $\mathrm{V}_{\text {DDA }}$ must have the same value as $V_{\text {DDD }}$.

Table 1. Pin Descriptions ${ }^{[1]}$ (Cont.)

Pin	Name	Type		Description
11	GNDA_VCO	Ground		VCO analog power supply ground.
12	RF_OUT	Output		RF output pair. The output level is programmable.
13	nRF_OUT	Output		RF output pair. The output level is programmable.
14, 17	$\mathrm{V}_{\mathrm{Vco}}$	Power		VCO supply. This pin ranges from $3.3 \mathrm{~V} \pm 5 \%$. $\mathrm{V}_{\text {Vco }}$ must have the same value as $V_{\text {DDA }}$.
15	RF_IN	Input		RF input pair.
16	nRF_IN	Input		RF input pair.
18	GNDA_VCO	Ground		VCO analog power supply ground.
19	$V_{\text {BIAS }}$	Analog		Place decoupling capacitors ($\geq 0.1 \mu \mathrm{~F}$) to ground, as close to this pin as possible.
20	$\mathrm{V}_{\text {TUNE }}$			Control input to tune the VCO.
21	GNDA_VCO	Ground		VCO analog power supply ground.
22	R_{CP}	Analog		Sets the charge pump current. Requires external resistor.
23	$\mathrm{V}_{\text {COM }}$	Analog		Place decoupling capacitors ($\geq 0.1 \mu \mathrm{~F}$) to ground, as close to this pin as possible.
24	$\mathrm{V}_{\text {REF }}$	Analog		Place decoupling capacitors ($\geq 0.1 \mu \mathrm{~F}$) to ground, as close to this pin as possible.
25	LD	LVCMOS output		Lock detect. Logic high indicates PLL lock. Logic low indicates loss of PLL lock.
26	mUTE	LVCMOS input	Pull-up	RF_OUT ${ }_{A}$ power-down. A logic low on this pin mutes the RF_OUT outputs and puts them in High-Impedance.
27	GNDD	Ground		Digital power supply ground.
28	VDDD	Power		Digital supply. $\mathrm{V}_{\text {DDD }}$ must have the same value as $\mathrm{V}_{\text {DDA }}$.
29	REF_IN	LVCMOS input	Analog	Reference input. This CMOS input has a nominal threshold of $V_{D D A} / 2$ and a $D C$ equivalent input resistance of $100 \mathrm{k} \Omega$. This input can be driven from a TTL or CMOS crystal oscillator, or it can be AC-coupled.
30	MUX_OUT	LVCMOS output		Multiplexed output and serial data out. Refer to Table 6.
31	GND_SD	Ground		Digital Sigma Delta Modulator power supply ground.
32	$V_{\text {DD_SD }}$	Power		Digital Sigma Delta Modulator supply. V_{DD} _SD must have the same value as $V_{D D A}$.
EP	$\begin{gathered} \text { Exposed } \\ \text { Pad } \end{gathered}$	Ground		Must be connected to GND.

1. Pull-up and Pull-down refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{C}_{\text {in }}$	Input Capacitance			4		pF
$\mathrm{R}_{\text {OUT }}$	LVCMOS Output Impedance	MUX_OUT \& LD		38		Ω
$\mathrm{R}_{\text {PULLUP }}$	Input Pull-up Resistor			51		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {PULLDOWN }}$	Input Pull-down Resistor			51		$\mathrm{k} \Omega$

Table 3. Supply Pins and Associated Current Return Paths

Power Supply Pin Number	Power Supply Pin Name	Associated Ground Pin Number	Associated Ground Pin Name
10	$V_{\text {DDA }}$	9	GNDA
28	$V_{D D D}$	27	GNDD
32	$V_{D D _S D}$	31	GND_SD
14,17	$V_{V C O}$	$V_{-C P}$	$11,18,21$
6	8	GNDA_VCO	

2. Principles of Operation

2.1 Synthesizer Programming

The Fractional-N architecture is implemented via a cascaded programmable dual modulus prescaler. The N divider offers a division ratio in the feedback path of the PLL, and is given by programming the value of INT, FRAC and MOD in the following equation:

$$
N=I N T+F R A C / M O D(1)
$$

INT is the divide ratio of the binary 16-bits counter (see Table 11).
FRAC is the numerator value of the fractional divide ratio. It is programmable from 0 to (MOD - 1) (see Table 12.) MOD is the 32-bit modulus. It is programmable from 2 to 4,294,967,295 (see Table 17).

The VCO frequency ($\mathrm{f}_{\mathrm{VCO}}$) at RF_OUT is given by the following equation: $\mathrm{f}_{\mathrm{VCO}}=\mathrm{f}_{\text {PFD }} \times($ INT + FRAC/MOD) (2) $\mathrm{f}_{\text {PFD }}$ is the frequency at the input of the Phase and Frequency Detector (PFD).

The 8V97052 offers an Integer mode. To enable that mode, the user has to program the FRAC value to 0 .
The device's integrated VCO features three VCO band-splits to cover the entire range with sufficient margin for process, voltage, and temperature variations. These are automatically selected by invoking the Autocal feature. The charge pump current is also programmable via the ICP SETTING register for maximum flexibility.

Via register 4, one can enable RF_OUT. Similarly, one can disable RF_OUT.
Valid reference clock needs to be input to the 8 V 97052 before it is programmed.

2.2 Reference Input Stage

The 8V97052 features one single-ended reference clock input (REF_IN). This single-ended input can be driven by an ac-coupled sine wave or square wave.

In Power-down mode this input is set to High-Impedance to prevent loading of the reference source.
The reference input signal path also includes an optional doubler.

2.3 Reference Doubler

To improve the phase noise performance of the device, the reference doubler can be used. By using the doubler, the PFD frequency is also doubled. This allows the VCO frequency to be adjusted more often and typically improves the performance of the device. When operating the device in Fractional mode with the SSMF-II Sigma Delta modulator type, the speed of the N counter is limited to 80 MHz , which is also the maximum PFD frequency that can be used in the Fractional mode. When operating the device in Fractional mode with the SSMF-B Sigma

Delta modulator type, the maximum speed of the N counter and PFD is 80 MHz . When the part operates in Integer-N mode, the PFD frequency is limited to 310 MHz .

The user has the possibility to select a higher PFD frequency (up to 310 MHz in Integer mode) by doing the following steps:

1. The user needs to set the size of the band select clock divider ratio (12 bits) to divide down to a frequency lower than 500 kHz and higher than 125 kHz .

- Increase the lock detect precision for a faster PFD frequency.

The lock detect window should be set as large as possible but less than a period of the phase detector. The phase detector frequency should be greater than 500 kHz .

Table 4. Lock Detect Precision (LDP)

LDP_Ext2 (D27 of Register 6)	LDP_Ext1 (D26 of Register 6)	LDP (D7 of Register 2)	LDP Value (ns)

2.4 Feedback Divider

The feedback divider N supports fractional division capability in the PLL feedback path. It consists in an integer N divider of 16-bits, and a fractional divider of 32-bits (FRAC) over 32-bits (MOD).

To select an integer mode only, the user sets FRAC to 0 .

Figure 2. RF Feedback N Divider
The 16 INT bits (Bit [D30:D15] in Register 0) set the integer part of the feedback division ratio.
The 32 FRAC bits (Bit [D14:D3] in Register 0 and Bit [D30:D11] in Register 3) set the numerator of the fraction that goes into the Sigma Delta modulator.

The 32 MOD bits (Bit [D14:D3] in Register 1 and Bit [D22:D3] in Register 5) set the denominator of the fraction that goes into the Sigma Delta modulator.

From the relation (2), the VCO minimum step frequency is determined by (1/MOD) * $\mathrm{f}_{\text {PFD }}$.
FRAC values from 0 to ($M O D-1$) cover channels over a frequency range equal to the PFD reference frequency. The PFD frequency is calculated as follows:

$$
\begin{equation*}
f_{P F D}=R E F_{C L K} \frac{1+D}{R} \tag{3}
\end{equation*}
$$

Use $\mathbf{2 R}$ instead of R if the reference divide by 2 is used.
REF $_{\text {CLK }}$ = the input reference frequency (REF_IN)
D $\quad=$ the input reference doubler (0 if not active or 1 if active)
$\mathbf{R} \quad=$ the 10-bits programmable input reference pre-divider
The programmable modulus (MOD) is determined based on the input reference frequency (REF_IN) and the desired channelization (or output frequency resolution). The high resolution provided on the R counter and the modulus allows the user to choose from several configuration (by using the doubler or not) of the PLL to achieve the same channelization. Using the doubler may offer better phase noise performance. The high resolution modulus also allows to use the same input reference frequency to achieve different channelization requirements. Using a unique PFD frequency for several needed channelization requirements allows the user to design a loop filter for the different needed setups and ensure the stability of the loop.

The channelization is given by $\frac{f_{P F D}}{M O D}$
In low noise mode (dither disabled), the Sigma Delta modulator can generate some fractional spurs that are due to the quantization noise.

The spurs are located at regular intervals equal to $f_{\text {PFD }} / L$ where L is the repeat length of the code sequence in the Sigma Delta modulator. That repeat length depends on the MOD value, as described in Table 5.

Table 5. Fractional Spurs Due to the Quantization Noise

Condition (Dither Disabled)	\mathbf{L}	Spur Intervals
MOD can be divided by 2, but not by 3	$2 \times M O D$	$\mathrm{f}_{\mathrm{PFD}} /(2 \times \mathrm{MOD})$
MOD can be divided by 3 , but not by 2	$3 \times \mathrm{MOD}$	$\mathrm{f}_{\mathrm{PFD}} /(3 \times \mathrm{MOD})$
MOD can be divided by 6	$6 \times \mathrm{MOD}$	$\mathrm{f}_{\mathrm{PFD}} /(6 \times \mathrm{MOD})$
Other conditions	MOD	$\mathrm{f}_{\mathrm{PFD}} / \mathrm{MOD}($ channel step $)$

In order to reduce the spurs, the user can enable the dither function to increase the repeat length of the code sequence in the Sigma Delta modulator. The increased repeat length is 2^{32} cycles so that the resulting quantization error is spread to appear like broadband noise. As a result, the in-band phase noise may be degraded when using the dither function.

When the application requires the lowest possible phase noise and when the loop bandwidth is low enough to filter most of the undesirable spurs, or if the spurs won't affect the system performance, it is recommended to use the low noise mode with dither disabled.

2.5 Phase and Frequency Detector (PFD) and Charge Pump

The phase detector compares the outputs from the R counter and from the N counter and generates an output corresponding to the phase and frequency difference between the two inputs the PFD. The charge pump current is programmable through the serial port (SPI) to several different levels.

The PFD offers an anti-backlash function that helps to avoid any dead zone in the PFD transfer function.

Figure 3. Simplified PFD Circuit using D-type Flip-flop
The band select logic operates between 125 kHz and 500 kHz . The band select clock divider needs to be set to divide down the PFD frequency to between 125 kHz to 500 kHz (logic maximum frequency).

2.6 PFD Frequency

The VCO band selection can be used while operating at PFD frequencies up to 310 MHz .
If the application requires the PFD frequency to be higher than 100 MHz in integer mode, the user can use one of the following two techniques (Technique A is the recommended procedure):

1. The user can use the extended register ExtBndSelDiv[4:1] bits (Bits [D6:D3]) in Register 6. These additional band select divider bits extend the band select divider from 8-bits (available in Register 4) to 12-bits. The four additional band select divider bits in
Register 4 are the most significant bits of the divide value. For proper VCO band selection, the PFD frequency divided by the band select divide value must be $\leq 500 \mathrm{kHz}$ and $\geq 125 \mathrm{kHz}$.

- If choosing this second technique, the user must follow the three following steps:

2. Disable the phase adjust function by setting the bit D28 in Register 1 to 0 , keep the PFD frequency lower than 125 MHz , and program the desired VCO frequency.
3. Enable the phase adjust function by setting BAND_SEL_DISABLE (Bit D28 in Register 1) to 1.
4. Set the desired PFD frequency and program the relevant R divider and N counter values.

In either technique, the lock detect precision should be programmed to be lower than the PFD period using the bit [D7] in Register 2 and the bits [D27:D26] in Register 6 (refer to Table 4).

2.7 External Loop Filter

The 8V97052 requires an external loop filter. The design of that filter is application specific. For additional information, refer to Applications Information.

2.8 Phase Detector Polarity

The phase detector polarity is set by bit D6 in Register 2. This bit should be set to 1 when using a passive loop filter or a non-inverting active loop filter. If an inverting active filter is used, this bit should be set to 0 .

2.9 Charge Pump High-Impedance

In order to put the charge pump into three-state mode, the user must set the bit D4 [CP HIGHZ] in Register 2 to 1. This bit should be set to 0 for normal operation.

2.10 Integrated Low Noise VCO

The VCO function of the 8 V 97052 consists in three separate VCOs. This allows keeping narrow tuning ranges for the VCOs while offering a large frequency tuning range for VCO core. Keeping narrow VCO tuning ranges allows for lower VCO sensitivity ($\mathrm{K}_{\mathrm{VCO}}$), which results in the best possible VCO phase noise and spurious performance.

The user does not have to select the different VCO bands. The VCO band select logic of the 8 V 97052 will automatically select the most suitable band of operation at power up or when Register 0 is written

2.11 RF_IN Input

The 8V97052 offers a RF_IN differential input that can be used with an external VCO with frequencies up to 4.4 GHz . The RF_IN input signal can be routed directly to the output driver M0. For more information, see Table 85.

2.12 Output Distribution Section

The 8V97052 device provides an open drain output RF_OUT. The output can generate a frequency $\mathrm{f}_{\mathrm{Vco}} / \mathrm{M0}$ or RF_IN / M0 for any allowed value of M0.

Figure 4. Output Clock Distribution
RF_OUT and nRF_OUT are derived from the drain of an NMOS differential pair driven by the VCO output (or by the M0 divider), as shown in Figure 5.

Figure 5. Output Stage
Eight programmable output power levels can be programmed from -4 dBm to +11.5 dBm (see RF Output Power section).

The supply current to the output stage can be shut down until the part achieves lock. To enable this mode, the user will set the MTLD bit in Register 4. The MUTE pin can be used to mute the output and be used as a similar function.

2.13 Output Matching

The output of the 8 V 97052 is an open drain output and can be matched in different ways.
A simple broadband matching is to terminate the open drain RF_OUT output with a 50Ω to $V_{\text {DDA }}$, and with an AC coupling capacitor in series. An example of this termination scheme is shown on Figure 6.

Figure 6. Broadband Matching Termination

This termination scheme allows to provide one of the selected output power on the differential pair when connected to a 50Ω load.
(See the RF Output Power section for more information about the output power selection).
The 50Ω resistor connected to $V_{\text {DDA }}$ can also be replaced by a choke, for better performance and optimal power transmission.

The pull up inductor value is frequency dependent. For impedance of 50Ω pull-up, the inductance value can be calculated as
$L=50 /(2 \times 3.14 \times F)$, where F is operating frequency. In this example,
$\mathrm{L}=3.9 \mathrm{nF}$ is for an operating frequency of approximately 2 GHz .

Figure 7. Optimal Matching Termination
For more recommendations on the termination scheme, see Applications Information.

2.14 Band Selection Disable

For a given frequency, the output phase can be adjusted when using the Band_Sel_Disable bit (Bit D28 in Register 1). When this bit is enabled (Bit D28 set to 1), the part does not do a VCO band selection or phase resync after an update to Register 0.

When the Band_Sel_Disable bit is set to 0, and when Register 0 is updated, the part proceeds to a VCO band selection, and to a phase resync if phase_resync is also enabled in Register 7 (Bits [D18:D17] set to D18 = 1 and D17 = 0) .

The "Band_Sel_Disable" bit is useful when the user wants to make small changes in the output frequency (<1MHz from the nominal frequency) without recalibrating the VCO and minimizing the settling time.

2.15 Phase Adjust

The output phase is controlled by the 12-bit phase value Bits [D26:D15] in Register 1. The output phase can vary over 360° with a $360^{\circ} \times 2^{\wedge} 20 \div$ MOD step. For dynamic adjustments of the phase after an initial phase setting, it is recommended to select the BAND_SEL_DISABLE function by setting the Band_Sel_Disable bit (D28 in Register 1) to 1 .

2.16 Phase Resync

The phase alignment function operates based on adjusting the "fractional" phase, so the phase can settle to any one of the MOD phase offsets, MOD being the modulus of the fractional feedback divider.

The phase adjustment can provide a $0^{\circ}-360^{\circ}$ of phase adjust, assuming that the output divider ratio is set to 1 .
The phase step is TVCO/MOD for the normal case of fundamental feedback. TVCO is the period of the VCO.
The feedback select bit (FbkSel bit, Bit D23 in Register 4) gives the choices of fundamental feedback or divided feedback. This bit controls the mux that sends the VCO signal or the output divider signal to the feedback loop. The user can get larger phase steps in the divided mode, but the phase noise may be degraded, especially in fractional mode. Should the user select this option, the phase adjustment step would be $\sim T_{\text {OUT }} / M O D$, where $T_{\text {OUT }}$ is the output signal period.

When the part is in fractional mode, the device is dithering the feedback divider value. As an example, when using a 4 GHz VCO frequency, the feedback divider value may dither between div-by-20 and div-by-21. Since the period is 250 ps , there will be 250 ps of jitter added to the phase detector. This jitter is filtered by the loop, but can still show up at the output if the loop bandwidth is high. When using a divider before the feedback divider, the effective VCO period is increased. If a div-by-64 is used for example, the period becomes
$64 \times 250 \mathrm{ps}=16 \mathrm{~ns}$. This means that there could be an additional 16 ns of jitter at the PFD, rather than 250 ps . It is more challenging for the loop to filter this larger amount of jitter and this will degrade the overall performance of the part, unless the user chooses to use a very low loop bandwidth. With normal loop bandwidth configurations (for optimal noise), the phase noise would be degraded when using a divided feedback mode.
The phase resync is controlled by setting Bits [D18:D17] in Register 7 to D18 = 1 and D17 $=0$.
When phase resync is used, an internal timer generates sync signals every $\mathrm{T}_{\text {SYNC }}$ where:
$T_{\text {SYNC }}=$ ClkDiv $\times M O D \times T_{\text {PFD }}$

- ClkDiv = the value (from 1 and 4095) programmed in the 12-bit clock counter in Bits [D31:D20] in Register 4. The 12-bit counter is used as a timer for Fast Lock and for the Phase Resync function.
- MOD = the modulus value (Bits [D14:D3] of Register 1 and Bits [D22:D3] of Register 5)
- $\mathrm{T}_{\text {PFD }}=$ the PFD period

In Equation 5, the minimum of either MOD value or 4095 is used for calculating $\mathrm{T}_{\text {SYNC }}$.

Figure 8. 12-bit Counter for Fast Lock and Phase Resync
After the user program a frequency, the second sync pulse coming from the 12-bit counter, after the nCS is asserted high, is used to resynchronize the output phase to the input phase. To ensure that the PLL is locked before to resynchronize the output phase, TSYNC must be larger than the worst case lock time.

2.17 Fast Lock Function

The device uses a fast-lock mode to decrease lock time.
In order to allow the fast lock mode, the Fast Lock Switch (FLSW) is shorted to ground and the Charge Pump Current (ICP) is changed temporarily until the fast lock mode is disabled.

The loop bandwidth needs to be increased temporarily in order to allow a faster lock time. By doing this, the loop filter needs to be initially designed so that it addresses the risk of instability of having the zero and the poles too close to the actual bandwidth knee, when the user switches to a fast lock mode.

The loop bandwidth is proportional to: RS and ICP (BW ~RS $\times I C P$)
Where:

- BW = the loop bandwidth
- $\mathrm{RS}=$ the damping resistor
- ICP = the programmable charge pump current

In order to enable the fast lock mode, the charge pump current is increased to the maximum value in order to increase the loop bandwidth. In parallel, the FLSW filter is set to ON so that the RS value is $1 / 4$ of its initial value in order to maintain the loop stability. By doing so, the zero and the first pole are moved (by a factor of 4 x in the example below), so that the zero and the pole are kept at a suitable distance around the loop bandwidth.

Figure 9. Example of Fast Lock Mode Loop Filter Topology
In the example of Figure 9, the damping resistor $R S$ is equal to:
$R S 1+R S 2$ in normal mode (FSLW switch OFF), with RS2 $=3 \times$ RS1
When the FLSW switch is ON, the damping resistor value is reduced by $1 / 4$ of its initial value ($R S=R S 1$).
The second pole defined by R3 and C3 need needs to be designed so that there is no risk of instability when widening the loop bandwidth.

2.18 RF Output Power

For RF_OUT the output power can be programmed from -4 dBm to +11.5 dBm .
Refer to Table 44 and Table 45 in the Registers section for additional information.

2.19 MUX_OUT

MUX_OUT is a multipurpose output that can be programmed to provide the user with some internal status and values for test and debugging purpose. In addition, MUX_OUT can also be programmed to provide an additional serial data out pin for a 4-wire SPI interface when needed. The MUX_OUT function is described in the Table 6 and can be programmed in Bits [D28:D26] in Register 2.

Table 6. MUX_OUT Pin Configuration

MUX_OUT Register Value	MUX_OUT Function
000	High-Impedance output
001	V $_{\text {DDD }}$
010	GNDD
011	R counter output
100	N counter output
101	Reserved
110	Lock detect
111	MUX_OUT configured as SDO

2.20 Power-Down Mode

When power-down is activated, the following events occur:

1. Counters are forced to their load state conditions

- VCO is powered down
- Charge pump is forced into three-state mode
- Digital lock detect circuitry is reset
- RF_OUT buffers are disabled
- The input stage is powered down and set to High-Impedance
- Input registers remain active and capable of loading and latching data

2.21 Default Power-Up Conditions

All the RF outputs are muted at power up until the loop is locked. Refer to Registers for default values in registers.

2.22 Program Modes

Table 7 and Registers indicates how the program modes are set up in the 8V97052.
Table 7. Control Bits Configuration

Control Bits (CB)			
C3	C2	C1	
0	0	0	Register 0
0	0	1	Register 1
0	1	0	Register 2
0	1	1	Register 3
1	0	0	Register 4
1	0	1	Register 5
1	1	0	Register 6
1	1	1	Register 7

2.23 Double Buffering

The following bits are doubled buffered:

1. PHASE (Bits[D26:D15] in Register 1)

- MOD (Bits [D14:D3] in Register 1 and Bits [D22:D3] in Register 5)
- REF DOUBLER (Bit D25 in Register 2)
- REF DIV2 (Bit D24 in Register 2)
- R COUNTER (Bits [D23:D14] in Register 2)
- ICP SETTING (Bits [D12:D9] in Register 2)
- CALIB_VC (Bits [D20:D19] in Register 7)
- CP_BCC (Bits D[29:25] in Register 5)

The user must proceed to the following steps before any value written in these bits are used.

1. The new values are written in the double buffered bits

- A new Write is performed on Registers 0.

The RF DIVIDER value in Register 7 (Bits [D14:D12]) is also double buffered by the DOUBLE BUFFER bit (Bit D13 in Register 2) is set to 1 .

3. Timing Characteristics

Figure 10. SPI Write Cycle Timing Diagram

Figure 11. SPI Read Cycle Timing Diagram

Table 8. SPI Read / Write Cycle Timing Parameters

Symbol	Parameter	Minimum	Maximum	Unit
$\mathrm{f}_{\mathrm{CLK}}$	SCLK frequency	-	20	MHz
t_{SU}	nCS, SDI setup time to SCLK	10	-	ns
t_{H}	SCLK to nCS, SDI hold time	10	-	ns
t_{LO}	SCLK low pulse width	25	-	ns
t_{HI}	SCLK high pulse width	25	-	ns
$\mathrm{t}_{\text {PW }}$	nCS De-asserted pulse width	20	ns	

4. 3- or 4-Wire SPI Interface Description

The 8V97052 has a serial control port capable of responding as a slave in an SPI compatible configuration to allow access to any of the internal registers (see Registers) for device programming or examination of internal status. See the specific sections for each register for details on meanings and default conditions.

SPI mode slave operation requires that a device external to the 8 V 97052 has performed any necessary serial bus arbitration and/or address decoding at the level of the board or system. The 8V97052 begins a cycle by detecting an asserted (low) state on the nCS input at a rising edge of SCLK. This is also coincident with the first bit of data being shifted into the device. In SPI mode, the first bit is the Most Significant Bit (MSB) of the data word being written. Data must be written in 32-bit words, with nCS remaining asserted and one data bit being shifted in to the 8 V97052 on every rising edge of SCLK. If nCS is de-asserted (high) at any time except after the complete $32^{\text {nd }}$ SCLK cycle, this is treated as an error, and the shift register contents are discarded. No data is written to any internal registers. If nCS is de-asserted (high) as expected at a time at least t_{Su} after the $32^{\text {nd }}$ falling edge of SCLK, then this will result in the shift register contents being acted on according to the control bit in it.

It is recommended to write the registers in reverse sequential order, starting with the highest register number first and ending with Register 0.

The word format of the 32-bit quantity in the shift register is shown in Table 9. The register fields in the 8V97052 have been organized so that the three LSBs in each 32-bit register row are not used for data transfer. These bits will represent the base address for the 32-bit register row.

Table 9. SPI Mode Serial Word Structure

Bit \#	MSB							LSB
	31	...	5	4	3	2	1	0
Meaning	D[31:3]						Control Bits	
Width	29						3	

To perform a register Read, the user needs set the MUX_OUT bits (Bits [D28:D26]) in Register 2 to 111 to configure the MUX_OUT pin as SDO. Register 7 (Instruction register) needs to be set for Read operation. Bit D3 of Register 7 will set the Read or Write command, and Bits [D4:D6] determine the read back address.

If a read operation is requested, 32-bits of read data will be provided in the immediately subsequent access. nCS must be de-asserted (high) for at least $t_{\text {PW, }}$, and then reasserted (low).

If SCLKE = 1 (default condition), one data bit will be transmitted on the SDO output at the falling edge of $n C S$ and each falling edge of SCLK as long as nCS remains asserted (low), and the master device should capture data on the rising edge of SCLK. If SCLKE $=0$, one data bit will be transmitted on the SDO output at each rising edge of SCLK as long as nCS remains asserted (low), and the master device should capture data on the falling edge of SCLK.

If nCS is de-asserted (high) before 32-bits of read data have been shifted out, the read cycle will be considered to be completed. If nCS remains asserted (low) longer than 32-bit times, then the data during those extra clock periods will be undefined. The MSB of the data will be presented first.

5. Registers

5.1 Register 0

Table 10. Register 0 Bit Allocation

Table 11. Register 0: 16-bit Feedback Divider Integer Value (INT). Function Description

Name	Description	Factory Defaults	Function
NDiv[16:1]	Feedback Divider Integer Value (INT)	$\begin{gathered} 0000000001100100 \\ \text { (INT = 100) } \end{gathered}$	```00000000 0000 0000= Not allowed 00000000 0000 0001 = Not allowed 000000000000 0111 = Not allowed 00000000 0000 1000=8 000000000001 0111=23 00000000 0001 1000=24 111111111111 1111=65,535```

Table 12. Register 0: 12 Last Bit Feedback Divider Fractional Value (FRAC). Function Description ${ }^{11]}$

Name	Description	Factory Defaults		Function		
		Register 0 FRAC (FDiv[32:21])	Register 3 FRAC (FDiv[20:1])	Register 0 FRAC (FDiv[32:21])	Register 3 FRAC (FDiv[20:1])	Value
FDiv[32:1]	Feedback Divider Fractional Value (FRAC)	000000000000	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	000000000000	$\begin{aligned} & 000000000000 \\ & 00000000 \end{aligned}$	0
					$\begin{aligned} & 000000000000 \\ & 00000001 \end{aligned}$	1
					$\begin{aligned} & 000000000000 \\ & 00000010 \end{aligned}$	2
					\ldots	
					111111111111 11111111	$\begin{aligned} & \left(2^{\wedge} 20\right)-1= \\ & 1,048,575 \end{aligned}$
				000000000001	$\begin{aligned} & 000000000000 \\ & 00000000 \end{aligned}$	$\begin{gathered} 2^{\wedge} 20= \\ 1,048,576 \end{gathered}$
					...	
					$\begin{aligned} & 111111111111 \\ & 11111111 \end{aligned}$	(2^21)-1
				...		
				111111111111	$\begin{aligned} & 000000000000 \\ & 00000000 \end{aligned}$	$\begin{gathered} \left(2^{\wedge} 20\right)^{*} \\ \left(2^{\wedge} 12-1\right) \end{gathered}$
					...	
					$\begin{aligned} & 111111111111 \\ & 11111111 \end{aligned}$	$2^{\wedge} 32-1$

1. This table is used along with Register 3 FRAC value in order to complete the 32 bits of FRAC.

Table 13. Register 0: 3-bit Control Bits. Function Description ${ }^{[1]}$

Name	Description	Function
$\mathrm{CB}[3: 1]$	Control bits	$000=$ Register 0 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 000 in order to Write to Register 0 .

5．2 Register 1

Table 14．Register 1 Bit Allocation

$\begin{array}{\|c} \hline \stackrel{\varrho}{\mathbf{\omega}} \\ \hline \end{array}$	$\overline{\text { ¢ }}$	\％	8	\％	ล	\％	®	吉	กั	ส	$\overline{\text { a }}$	ถั	$\stackrel{\text { ® }}{\square}$	$\stackrel{\infty}{\square}$	へ	음	$\stackrel{n}{\square}$	京	끔	～	$\bar{\square}$	음	8	ロ	－	¢	$\stackrel{\circ}{\circ}$	勍	®	ก	ธ	8
$\left\lvert\, \underset{\frac{2}{z}}{\omega}\right.$									$\begin{array}{\|l\|l} \stackrel{\otimes}{0} \\ \text { © } \\ \text { © } \end{array}$		べめ						$\left\lvert\, \begin{aligned} & \overline{\mathbf{0}} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$		$\begin{aligned} & \overline{\mathrm{V}} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 产 } \\ & \stackrel{\text { B }}{2} \end{aligned}$	$\begin{aligned} & \text { 僉 } \\ & \hline \end{aligned}$	$\frac{\tilde{y}}{\mathbf{D}}$		$\begin{array}{\|c} \stackrel{\sim}{0} \\ \stackrel{y}{2} \end{array}$	荷	$\frac{\tilde{y}}{\mathbf{y}}$	$\frac{\tilde{y}}{\frac{\tilde{y}}{2}}$	$\frac{\bar{y}}{\bar{y}}$	\％	®	¢
		$\begin{aligned} & \text { 号 } \\ & \text { 胥 } \\ & \ddot{\sim} \\ & \underset{\sim}{w} \end{aligned}$			$\left\lvert\, \begin{aligned} & \text { 足 } \\ & \stackrel{3}{3} \end{aligned}\right.$	PHASE \quad MO																								CONTROLBITS		

Table 15．Register 1：1－Bit BAND＿SEL＿DISABLE．Function Description

Name	Description	Factory Defaults	Function
Band＿Sel＿	BAND＿SEL＿DISABLE	0	$0=$ VCO Band Selection occurs after a Write to Register 0
Disable			$1=$ VCO Band selection is not active and hold to previous VCO band selection

Table 16．Register 1：12－bit Phase Value（PHASE）．Function Description

Name	Description	Factory Defaults	Function
Phase	PHASE	000000000001	$000000000000=0$
$[12: 1]$			$000000000001=1=2^{\wedge} 20$
			\ldots
			$111111111111=4,293,918,270$

Table 17. Register 1: 12 Last Bits Modulus Value (MOD). Function Description[1]

Name	Description	Factory Defaults		Function		
		Register 1 MOD (FDiv[32:21])	Register 5 MOD (FDiv[20:1])	Register 1 MOD (FDiv[32:21])	Register 5 MOD (FDiv[20:1])	Value
Mod[32:1]	MODULUS VALUE (MOD)	000000000000	$\begin{gathered} 000000000000 \\ 00000010 \end{gathered}$	000000000000	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	Not Allowed
					$\begin{gathered} 000000000000 \\ 00000001 \end{gathered}$	Not Allowed
					$\begin{gathered} 000000000000 \\ 00000010 \end{gathered}$	2
					...	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$\begin{gathered} \left(2^{\wedge} 20\right)-1 \\ = \\ 1,048,575 \end{gathered}$
				000000000001	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	$\begin{gathered} 2^{\wedge} 20= \\ 1,048,576 \end{gathered}$
					..	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$\left(2^{\wedge} 21\right)-1$
				...		
				111111111111	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	$\begin{gathered} 2^{\wedge} 20^{*}\left(2^{\wedge} 12\right. \\ -1) \end{gathered}$
					...	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$2^{\wedge} 32-1$

1. This table is used along with Register 5 MOD value in order to complete the 32 bits of MOD.

Table 18. Register 1: 3-Bit Control Bits. Function Description ${ }^{[1]}$

Name	Description	Function
$\mathrm{CB}[3: 1]$	Control bits	$001=$ Register 1 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 001 in order to write to Register 1.

5．3 Register 2

Table 19．Register 2 Bit Allocation

$\frac{\infty}{\bar{n}}$	$\overline{0}$	苟	®i	$\underset{\sim}{\infty}$	N	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\text { IN}}$	$\underset{\sim}{\text { Non }}$	$\underset{\sim}{\sim}$	$\overline{\mathrm{I}}$	ిి,	$\stackrel{\square}{\square}$	$\frac{\infty}{\square}$	$\hat{\Delta}$	$\stackrel{0}{i}$	$\frac{n}{\square}$	$\stackrel{ \pm}{\Delta}$	\bar{m}	$\underset{\mathbf{N}}{\sim}$	$\bar{\square}$	은	욤	$\stackrel{\infty}{\square}$	人	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\square}$	\％	®	ヘ	$\bar{\square}$	응
\sum_{Σ}^{∞}	$\begin{aligned} & 0 \\ & 0 \\ & \sum_{2}^{0} \\ & 0 \\ & 0 \\ & \mathbb{Q} \end{aligned}$						$\begin{aligned} & \text { N } \\ & \underset{\text { x }}{ } \end{aligned}$	$\frac{0}{\dot{x}}$	¢	$\stackrel{\infty}{\Perp}$	人	$\stackrel{\bigcirc}{\Upsilon}$	$\stackrel{\sim}{\square}$	¢	$\underset{\sim}{\infty}$	๙	$\bar{\sim}$					$\overline{0}$ B O O		0	$\left\lvert\, \begin{aligned} & 0_{1} \\ & Q_{1} \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \substack{n \\ 3 \\ 0 \\ 3 \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{T} \\ & \underline{\mathrm{O}} \\ & \mathbf{I} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{5} \\ & \hline \end{aligned}$	๗	$\underset{\sim}{\sim}$	¢0
	$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{r} \\ & \underset{\sim}{u} \\ & \underset{\sim}{x} \end{aligned}$				$\begin{gathered} \text { UXX_O } \\ \text { UT } \end{gathered}$	$\begin{gathered} \underset{\sim}{\Psi} \\ \underset{\sim}{u} \\ \underset{\sim}{0} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \hline \end{gathered}$	$\begin{aligned} & \underset{\sim}{\text { N }} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \end{aligned}$					OU	NT							ICl SETT	ING		$\stackrel{\text { u }}{\text { un }}$	0	$\begin{aligned} & \underset{\bar{y}}{\substack{2}} \\ & \frac{\mathbf{\gamma}}{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \mathbf{O} \\ & \bar{T} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { 足 } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{N}{\infty} \\ & 0 \\ & \underset{O}{y} \\ & \underset{y}{z} \\ & 0 \end{aligned}$		

Table 20．Register 2：2－bit NOISE MODE．Function Description

Name	Description	Factory Defaults	Function
ModeNoise［2：1］	NOISE MODE	00	$00=$ Low Noise Mode（Dither OFF）
			$01=$ Reserved
			$10=$ Reserved

Table 21．Register 2：3－bit MUX＿OUT．Function Description

Name	Description	Factory Defaults	Function
MUX＿OUT［3：1］	MUX＿OUT	000	$000=$ High－Impedance output
			$001=$ VDDD
			$010=$ GNDD
			$011=$ R counter output
		$100=$ N counter output	
		$101=$ Reserved	
		$110=$ Lock Detect	
			$111=$ MUX＿OUT configured as SDO

Table 22．Register 2：1－bit REF DOUBLER．Function Description

Name	Description	Factory Defaults	Function
RefDoub	REF DOUBLER	0	$0=$ Disabled $1=$ Enabled

Table 23. Register 2: 1-bit REF DIV2. Function Description

Name	Description	Factory Defaults	Function
RDIV2	REF DIV2	0	$0=$ Disabled

Table 24. Register 2: 10-bit R COUNTER (R). Function Description

Name	Description	Factory Defaults	Function
$R[10: 1]$	R	0000000001	$0000000000=$ Not Allowed
			$0000000001=1$
			$0000000010=2$
			$1111111111=1023$

Table 25. Register 2: 1-bit DOUBLE BUFFER. Function Description

Name	Description	Factory Defaults	
DoubBuff	DOUBLE BUFFER	0	$0=$ Disabled

Table 26. Register 2: 4-bit Charge Pump Setting (ICP SETTING). Function Description

Name	Description	Factory Defaults	Function
ChrgPmp[4:1]	ICP SETTING	0000	$\begin{aligned} & \mathrm{Icp}(\mathrm{~mA}) \text { assuming } \mathrm{RCP}=5.1 \mathrm{k} \Omega \\ & 0000=0.31 \\ & 0001=0.63 \\ & 0010=0.94 \\ & 0011=1.25 \\ & 0100=1.56 \\ & 0101=1.88 \\ & 0110=2.19 \\ & 0111=2.50 \\ & 1000=2.81 \\ & 1001=3.13 \\ & 1010=3.44 \\ & 1011=3.75 \\ & 1100=4.06 \\ & 1101=4.38 \\ & 1110=4.69 \\ & 1111=5.00 \end{aligned}$

Table 27. Register 2: 1-bit Lock Detect Function (LDF). Function Description

Name	Description	Factory Defaults	Function[1]
LDF	LDF	0	$0=40$ consecutive cycles (recommended for FRAC-N mode) $1=5$ consecutive cycles (recommended for INT-N mode)

1. LDF controls the number of PFD cycles that needs to be considered by the lock detect function to decide if the part has achieved lock.

Table 28. Register 2: 1-bit Lock Detect Precision. Function Description

Name	Description	Factory Defaults	
LDP	LDP	0	$0=10 \mathrm{~ns}$ $1=6 \mathrm{~ns}$

Table 29. Register 2: 1-bit Phase Detector Polarity. Function Description

Name	Description	Factory Defaults	Function
PD_Pol	PD POLARITY	1	$0=$ Negative $1=$ Positive

Table 30. Register 2: 1-bit Power Down. Function Description

Name	Description	Factory Defaults	Function
PwrDwn	POWER DOWN	0	$0=$ Disabled $1=$ Enabled

Table 31. Register 2: 1-bit Charge Pump High-Impedance. Function Description

Name	Description	Factory Defaults	Function
CP_HIGHZ	CP HIGHZ	0	$0=$ Disabled $1=$ Enabled

Table 32. Register 2: 3-bit Control Bits. Function Description

Name	Description	Function ${ }^{[1]}$
$\mathrm{CB}[3: 1]$	Control bits	$010=$ Register 2 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 010 in order to Write to Register 2.

5.4 Register 3

Table 33. Register 3 Bit Allocation

Table 34. Register 3: 20 First Bits Feedback Divider Fractional Value (FRAC). Function Description

Name	Description	Factory Defaults		Function ${ }^{[1]}$		
		$\begin{gathered} \text { Register } 0 \\ \text { FRAC } \\ \text { (FDiv[32:21]) } \end{gathered}$	$\begin{aligned} & \text { Register 3 } \\ & \text { FRAC } \\ & \text { (FDiv[20:1]) } \end{aligned}$	Register 0 FRAC (FDiv[32:21])	Register 3 FRAC (FDiv[20:1])	Value
FDiv[32:1]	Feedback Divider Fractional Value (FRAC)	000000000000	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	000000000000	00000000000000000000	0
					00000000000000000001	1
					00000000000000000010	2
					...	
					11111111111111111111	$\left(2^{\wedge} 20\right)-1=1,048,575$
				000000000001	00000000000000000000	$2^{\wedge} 20=1,048,576$
					...	
					11111111111111111111	(2^21)-1
					...	
				111111111111	00000000000000000000	$\left(2^{\wedge} 20\right) *\left(2^{\wedge 12-1)}\right.$
					...	
					11111111111111111111	$2^{\wedge} 32-1$

1. This table is used along with Register 0 FRAC value in order to complete the 32 bits of FRAC.

Table 35. Register 3: 1-Bit SCLKE. Function Description

Name	Description	Function ${ }^{[1]}$
$C B[3: 1]$	Control bits	011 = Register 3 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 011 in order to Write to Register 3.

5.5 Register 4

Table 36. Register 4 Bit Allocation

Table 37. Register 4: 12-bit Clock Divider Value (CLOCK COUNTER VALUE). Function Description

Name	Description	Factory Defaults	Function
CIkDiv[12:1]	CLOCK COUNTER	00000000	$000000000000=$ Not allowed
	VALUE	0001	$000000000001=1$ $000000000010=2$ \ldots
		$111111111111=4095$	

Table 38. Register 4: 8-bit Band Select Clock Counter. Function Description

Name	Description	Factory Defaults	Function ${ }^{[1]}$
BndSeIDiv[8:1]	BAND SELECT CLOCK	00000001	$00000000=$ Not Allowed COUNTER
		$00000001=1$ $00000010=2$ \ldots 	

1. BAND SELECT CLOCK COUNTER sets the value of the divider for the band select logic clock input. By default, the output frequency of the R counter is used to clock the band select logic. If this frequency is larger than 125 kHz , the band Select Clock counter can be used to divide the R counter output to a smaller frequency suitable for the band selection logic.

Table 39. Register 4: 1-bit VCO Power Down. Function Description

Name	Description	Factory Defaults	Function
VCOPwrDwn	VCO POWER DOWN	0	$0=$ VCO Powered Up $1=$ VCO Powered Down

Table 40. Register 4: 1-bit Mute Till Lock Detect. Function Description

Name	Description	Factory Defaults	Function
MTLD	MTLD	0	$0=$ Mute Disabled
		$1=$ Mute Enabled	

Table 41. Register 4: 1-bit RF_IN Enable. Function Description

Name	Description	Factory Defaults	Function
RF_IN_En	RF_IN_ENABLE	0	$0=$ RF_IN Disabled $1=$ RF_IN Enabled

Table 42. Register 4: 1-bit VCO or RF_IN. Function Description

Name	Description	Factory Defaults	Function
Sel_M0_Mux	SEL_M0_Mux	0	$0=$ Select input from Internal VCO routed to M0 $\mathbf{1}^{1}$ $1=$ Select input coming from RF_IN_ROUTE_MUX (RF_IN) routed to M0 ${ }^{2}$

Table 43. Register 4: 1-bit RF_IN Route Select. Function Description

Name	Description	Factory Defaults	Function
Sel_RF_IN_Rout e_Mux	RF_IN ROUTE SELECT	0	$0=$ RF_IN unused $1=R F_{-} I N$ signal routed to M0 Mux

Table 44. Register 4: 1-bit RF_OUTA Enable. Function Description

Name	Description	Factory Defaults	Function
RF_OUT_En	RF_OUT ENABLE	0	$0=$ Disabled (High-Impedance) 1 = Enabled

Table 45. Register 4: 1-bit RF_OUTA Output Power. Function Description
$\left.\begin{array}{|c|c|c|l|}\hline \text { Name } & \text { Description } & \begin{array}{c}\text { Factory } \\ \text { Defaults }\end{array} & \\ \hline \text { RF_OUT_Pwr[2: } & \text { RF_OUT OUTPUT } & 10 & \begin{array}{l}00=-4 \mathrm{dBm} \\ 01=0 \mathrm{dBm} \\ \text { 1] } \\ \end{array} \\ & & & \\ & & 10=+2.5 \mathrm{dBm} \\ 11=+6 \mathrm{dBm}\end{array}\right]$

1. $\mathrm{f}_{\text {RF_OUT }}=250 \mathrm{MHz}$.

Table 46. Register 4: 3-bit Control Bits. Function Description

Name	Description	Function ${ }^{[1]}$
CB[3:1]	Control bits	$100=$ Register 4 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 100 in order to write to Register 4.

5.6 Register 5

Table 47. Register 5 Bit Allocation

Table 48. Register 5: 2-bit LD (Lock Detect) Pin Mode. Function Description

Name	Description	Factory Defaults	Function
LDPInMode[2:1]	LD PIN MODE	01	$00=$ Low
			$01=$ Digital Lock Detect
			$10=$ Low
			$11=$ High

Table 49. Register 5: 20 First Bits Modulus Value (MOD). Function Description

Name	Description	Factory Defaults		Function ${ }^{[1]}$		
		Register 1 MOD (Fdiv[32:21])	Register 5 MOD (Fdiv[20:1])	Register 1 MOD (Fdiv[32:21])	Register 5 MOD (Fdiv[20:1])	Value
Mod[32:1]	MODULUS VALUE (MOD)	000000000000	$\begin{gathered} 000000000000 \\ 00000010 \end{gathered}$	000000000000	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	Not Allowed
					$\begin{gathered} 000000000000 \\ 00000001 \end{gathered}$	Not Allowed
					$\begin{gathered} 000000000000 \\ 00000010 \end{gathered}$	2
					\ldots	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$\begin{aligned} & \left(2^{\wedge} 20\right)-1= \\ & 1,048,575 \end{aligned}$
				000000000001	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	$2^{\wedge} 20=1,048,576$
					...	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$\left(2^{\wedge} 21\right)-1$
				...		
				111111111111	$\begin{gathered} 000000000000 \\ 00000000 \end{gathered}$	$2^{\wedge} 20^{*}\left(2^{\wedge} 12-1\right)$
					...	
					$\begin{gathered} 111111111111 \\ 11111111 \end{gathered}$	$2^{\wedge} 32-1$

1. This table is used along with Register 1 MOD value in order to complete the 32 bits of MOD.

Table 50. Register 5: 3-bit Control Bits. Function Description

Name	Description	Function ${ }^{[1]}$
$\mathrm{CB}[3: 1]$	Control bits	$101=$ Register 5 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 101 in order to write to Register 5.

5.7 Register 6

Table 51. Register 6 Bit Allocation ${ }^{[1][2][3]}$

NOTE 1. It is recommended that the user writes to Register 0 after writing to Register 6.
NOTE 2. BitD7 must be set to 0 for correct operation
NOTE 3. RO bits are Read Only bits.

Table 52. Register 6: 1-bit Digital Lock Detect. Function Description

Name	Description	Function
DigLock	DIGITAL LOCK	$0=$ PLL Not Locked $1=$ PLL Locked (according LDF and LDP in Register 2)

Table 53. Register 6: 1-bit Band Select Status (Read Only). Function Description

Name	Description	Function
Band_select_done	BAND_SELECT_DONE	$0=$ Band Selection Not Complete $1=$ Band Selection Complete

Table 54. Register 6: 2-bit Extra Lock Detect Precision. Function Description

Name	Description	Factory Defaults	Function ${ }^{[1]}$		
			$\begin{gathered} \text { Extra } \\ \text { Bit } \end{gathered}$	LDP Bits in Register 2	Value
LDP_Ext[2:1]	LDP_EXT Extra Lock Detect Precision	00	00	0	10ns
				1	6 ns
			01	0	3ns
				1	3 ns
			10	0	4ns
				1	4.5ns
			11	0	1.5ns
				1	1.5ns

1. LDP_Ext[2:1] are Extra Lock Detect Precision bits. When these bits are set to 00, then the precision of the Lock Detect precision only relies on the LDP bit in Register 2, so that the lock detect window is 10 ns or 6 ns , depending on the LDP bit in Register 2 . For high PFD frequencies, the 6 ns window may be larger than the entire ref/FB period. The LDP_ext bits reduce the size of the lock detect window allowing an accurate lock detection with higher PFD frequencies.

Table 55. Register 6: 1-bit Extra Bit of RF_OUTA Power. Function Description

Name	Description	Factory Defaults	Function ${ }^{[1][2]}$		
			Extra Bit	RF_OUT OUTPUT POWER Bits in Register 4	Value (dBm)
rfout_hi_pwr	RF_OUT_HI_PWR	0	0	00	-4
				01	0
				10	+2.5
				11	+6
			1	00	+5
				01	+7.5
				10	+11
				11	+11.5

1. RF_OUT_HI_PWR is an Extra Bit of RF_OUT Power that increases the output power to the RF_OUT output.
2. $\mathrm{f}_{\text {RF_OUT }}=250 \mathrm{MHz}$.

Table 56. Register 6: 2-bit Sigma Delta Modulator Order Configuration. Function Description

Name	Description	Factory Defaults	Function
SDMOrder[2:1]	SDM_ORDER	11	$00=$ OFF. The device operates in integer mode
			and the fractional part is ignored.
		$10=2$ st order order	
		$11=3^{\text {rd }}$ order	

Table 57. Register 6: 2-bit Dither Gain Configuration. Function Description

Name	Description	Factory Defaults	Function
DitherG	DITHER GAIN	0	$0=$ Dither Noise Shaping Disabled; LSB Dither (Recommended) $1=$ Dither Noise Shaping Enabled (LSB x4 Dither)

Table 58. Register 6: 1-bit Dither Noise Shaping Configuration. Function Description

Name	Description	Factory Defaults	Function
ShapeDitherEn	SHAPE_DITHER_EN	1	$0=$ Dither Noise Shaping Disabled $1=$ Dither Noise Shaping Enabled

Table 59. Register 6: 1-bit Sigma Delta Modulator Type Configuration. Function Description

Name	Description	Factory Defaults	Function ${ }^{[1]}$
SDMType	SDM_TYPE	0	$0=$ SSMF-II
$1=$ SSMF-B1			

1. The PFD frequency must be limited to 88 MHz when using the SSMFB DSM type (SDMType $=1$).

Table 60. Register 6: 2-bit VCO Band Selection Accuracy Configuration. Function Description

Name	Description	Factory Defaults	Function
band_select_acc[2:1]	BAND_SELECT_ACC	00	$00=1$ cycle of the band select clock (output of the
			Band Select Divider)
		$01=2$ cycles	
		$10=4$ cycles	
		$11=$ Reserved	

Table 61. Register 6: 8-Bit Current VCO Band. Function Description

Name	Description	Factory Defaults	Function
Band	Current VCO band.	000000000	Will display the currently selected band. Can be written to in order to overwrite the band as long as manu_band_en $=1$.

Table 62. Register 6: 1-Bit Manual Band Select Enable. Function Description

Name	Description	Factory Defaults	Function
MANU_BAND_EN	Manual band select enable	0	$0=$ Use band value computed by band select logic $1=$ Use values in band registers

Table 63. Register 6: 4-Bit Extra Most Significant Bits of Band Select Divider. Function Description

Name	Description	Factory Defaults	Value	Function
ExtBndSelDiv[4:1]	EXT_BND_SEL_DIV	0000	$\begin{gathered} \text { BSCC_R4 + } \\ {[\text { [EXT_BND_SEL_DIV]x2 }} \\ 56 \end{gathered}$	$0000=[$ BSCC_R4]
				0001 =[BSCC_R4]+256
				$0010=[$ BSCC_R4] + 512
				\ldots
				1111 = [BSCC_R4]+3840

Table 64. Register 6: 3-bit Control Bits. Function Description

Name	Description	Function ${ }^{[1]}$
$\mathrm{CB}[3: 1]$	Control bits	$110=$ Register 6 is programmed

1. The user has to set $\mathrm{CB}[3: 1]$ to 110 in order to write to Register 6.

5．8 Register 7

Table 65．Register 7 Bit Allocation ${ }^{[1][2]}$

$\frac{\infty}{\infty}$	产	\％	®	\％	ล	\％	～	荷	\％	중	$\overline{\text { İ }}$	즞	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\grave{\square}}$	N	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{\square}$	$\stackrel{\rightharpoonup}{\Delta}$	$\stackrel{m}{\square}$	$\stackrel{\text { N }}{\square}$	亏	$ㅇ ㅡ ㅁ ~$	요	®	へ	8	\％	̇	\％	\％	ธ	8
$\sum_{\underset{Z}{w}}^{\stackrel{\omega}{2}}$				$\left\lvert\, \begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{O X} \end{aligned}\right.$				$\left\lvert\, \begin{aligned} & \mathrm{t}_{1} \\ & \stackrel{\rightharpoonup}{\mathrm{a}} \end{aligned}\right.$	$\left\|\begin{array}{l} \frac{0}{1} \\ \frac{1}{0} \end{array}\right\|$	\mid	$\left\lvert\, \begin{aligned} & \overline{\bar{\prime}} \\ & \overline{\mathrm{a}} \end{aligned}\right.$						$\begin{aligned} & \overline{\mathbf{0}} \\ & \frac{\mathbf{8}}{\mathbf{W}} \end{aligned}$	$\begin{aligned} & \text { 呆 } \\ & \underset{\sim}{1} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{\|c} \stackrel{y}{x} \\ \stackrel{y}{x} \end{array}\right.$						$\begin{array}{\|l\|l} \hline \stackrel{y}{\mathrm{~B}} \\ \hline \end{array}$					\％	\％	＂
	0 0 O 0 0 0 0 0 0 0 0			$\underset{~}{\text { 号 }}$		REV＿ID			DEV＿ID	（RO）									DIV	DER		RESE	RVED								$\begin{aligned} & \text { NTR } \\ & \text { BITS } \end{aligned}$	

NOTE 1．SB bits are Sticky bits and need to be cleared．
NOTE 2．RO bits are Read Only bits．

Table 66．Register 7：1－bit Loss of Digital Lock．Function Description

Name	Description	Function ${ }^{[1]}$
Loss＿Dig＿Lock	LOSS＿DIG＿LOCK	$0=$ Locked since last time register was cleared $1=$ Loss of Digital Lock since last time register was cleared

1．This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Loss of Digital Lock occurrences．

Table 67．Register 7：1－bit Loss of Analog Lock．Function Description

Name	Description	Function ${ }^{[1]}$
Loss＿Anlg＿Lock	LOSS＿ANLG＿LOCK	$0=$ Band Selection remained the same since last time register was cleared $1=$ Band selection occurred since last time register was cleared

1．This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Band Selection occurrences．

Table 68．Register 7：1－bit SPI Error．Function Description

Name	Description	Function ${ }^{[1]}$
Spi＿error	SPI＿ERROR	$0=$ No SPI write error detection $1=$ SPI Write error

1．Spi＿error Bit goes high if the SPI interface detects a cycle with the incorrect number of SCLK cycles between nCS asserted Low and nCS asserted High．The SPI interface expects 32 clock cycles between nCS asserted Low and nCS asserted High．Any Read／Write via the SPI interface with more or less than 32 clock cycles will result in the Spi＿error Bit switched to 1 ．This bit is a sticky and needs to be cleared with a SPI write of 1 in order to detect further possible SPI Write／Read errors．

Table 69. Register 7: 3-bit Revision ID. Function Description

Name	Description	Factory Default
Rev_ID[3:1]	REV_ID	010

Table 70. Register 7: 4-bit Device ID. Function Description

Name	Description	Factory Default
Dev_ID[4:1]	DEV_ID	0111

Table 71. Register 7: 2-bit CALIB_VC Control Voltage Selection. Function Description

Name	Description	Factory Default	
Calib_Vc[2:1]	CALIB_VC	0	$00=\mathrm{VCC} / 2$
	Control Voltage		$01=\mathrm{VCC} \times 0.366$
	Selection During		$10=\mathrm{VCC} \times 0.63$
	Calibration		$11=$ High-Z

Table 72. Register 7: 2-bit Clock Divider Mode. Function Description

Name	Description	Factory Defaults	Function
CIkDivMode[2:1]	CLK DIV MODE	00	$00=$ Clock Divider OFF
			$01=$ Fast Lock Enabled
			$10=$ Resync Enabled

Table 73. Register 7: 1-bit Band Select Clock Mode. Function Description

Name	Description	Factory Defaults	Function ${ }^{[1]}$
BandSelCM	BAND SELECT	0	$0=$ LOW (125kHz) $1=$ HIGH (up to 500kHz logic sequence for Faster (CLOCK RATE)
			Lock applications)

1. BAND SELECT (CLOCK RATE) selects the speed of the logic sequence for the band selection. BandSelCM = 1 sets the logic sequence rate faster, which is recommended for fast lock operation and when high PFD frequencies are used. BandSelCM $=0$ is recommended when low PFD frequencies (125 kHz) are used. When using BandSeICM = 1, the value of the BAND SELECT CLOCK COUNTER (BndSelDiv[8:1]) must be less than or equal to 254.

Table 74. Register 7: 1-bit Feedback Select. Function Description

Name	Description	Factory Defaults	Function
FbkSel	FEEDBACK SELECT	1	$0=$ Divided (only allowed when RF_IN is not used, and when Sel_M0_Mux is set to 0) $1=$ Fundamental

Table 75. Register 7: 3-bit RF Output Divider (〒M0) Select. Function Description

Name	Description	Factory Defaults	Function
RFDiv[3:1]	RF OUTPUT DIVIDER	000	$\begin{aligned} & 000=\text { Div by } 1 \\ & 001=\text { Div by } 2 \\ & 010=\text { Div by } 4 \\ & 011=\text { Div by } 8 \\ & 100=\text { Div by } 16 \\ & 101=\text { Div by } 32 \\ & 110=\text { Div by } 64 \\ & 111=\text { Reserved } \end{aligned}$

Table 76. Register 7: 1-bit SCLKE. Function Description

Name	Description	Factory Default	Function
Sclke	SCLKE	1	$0=$ Output Data in a Read Cycle on a Rising Edge of SCLK $1=$ Output Data in a Read Cycle on a Falling Edge of SCLK

Table 77. Register 7: 1-bit READBACK_ADDR. Function Description

Name	Description	Function ${ }^{[1]}$
Rd_Addr[3:1]	READBACK_ADDR	$000=$ Register 0
		$001=$ Register 1
		$010=$ Register 2
		$011=$ Register 3
		$100=$ Register 4
		$101=$ Register 5
		$110=$ Register 6
		$111=$ Register 7

1. In order to Read a register, the user must set the SPI_R_WN Bit to 1 (READ) and indicate the address of the register to read in the READBACK_ADDR Bit (Bits[D6:D4]).

Table 78. Register 7: 1-bit SPI_R_WN. Function Description

Name	Description	
SPI_R_WN	SPI_R_WN	$0=$ WRITE $1=$ READ

1. Writing this bit to a ' 1 ' will allow the user to read back the register selected in READBACK_ADDR on the next 32 SCLK cycle. This bit will revert back to ' 0 ' once it is written with ' 1 ' and will not retain the ' 1 ' value.

Table 79. Register 7: 3-bit Control Bits. Function Description

Name	Description	Function ${ }^{[1]}$
$C B[3: 1]$	Control bits	$111=$ Register 7 is programmed

1. The user has to set $C B[3: 1]$ to 111 in order to write to Register 7.

6. Specifications

6.1 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8V97052 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 80. Absolute Maximum Ratings

Item	
Supply Voltage, $\mathrm{V}_{\mathrm{DDx}}{ }^{[1]}$	3.63 V
Analog Supply Voltage, $\mathrm{V}_{\mathrm{DDA}}$	3.63 V
Input, V_{I} REF_IN Other Inputs (MUTE, SDI, FLSW, $\left.\mathrm{V}_{\text {TUNE }}\right)$	-0.5 to $\mathrm{V}_{\mathrm{DDA}}+0.5 \mathrm{~V}$
Outputs, V_{O} RF_OUT, nRF_OUT	-0.5 to $\mathrm{V}_{\mathrm{DDA}}+0.5 \mathrm{~V}$
Outputs, V_{O} (SCLK, LD, nCS, MUX_OUT)	-0.5 to $\mathrm{V}_{\mathrm{DDA}}+0.5 \mathrm{~V}$
Outputs, I_{O}	40 mA
Continuous Current	65 mA
Surge Current	8 mA
Outputs, IO (SCLK, LD, nCS, MUX_OUT)	13 mA
Continuous Current	$125^{\circ} \mathrm{C}$
Surge Current	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature, T_{J}	
Storage Temperature, TSTG	

1. $\mathrm{V}_{\mathrm{DDX}}$ denotes $\mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{\mathrm{C}} \mathrm{CP}, \mathrm{V}_{\mathrm{DD}} \mathrm{SD}, \mathrm{V}_{\mathrm{VCO}}$.

6.2 DC Electrical Characteristics

Table 81. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}[1][2][3]$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{V}_{\mathrm{DDX}}$	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDA}}$	Analog Supply Voltage		3.135	3.3	3.465	V
$\mathrm{I}_{\mathrm{DDX}}$	Power Supply Current ${ }^{[4]}$			72	91	mA
$\mathrm{I}_{\mathrm{DDA}}$	Analog Supply Current ${ }^{[5]}$	RF_OUT - active		61	76	mA
		RF_OUT - muted		37	47	mA
$\mathrm{I}_{\text {VCO }}$	VCO Supply Current			37	47	mA
-	Power-down mode ${ }^{[6]}$	CE $=0$ or Register 2, bit D5 $=1$		7	9	mA

1. $\mathrm{V}_{\mathrm{DDX}}$ denotes $\mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{-} \mathrm{CP}, \mathrm{V}_{\mathrm{DD}} \mathrm{SD}, \mathrm{V}_{\mathrm{VcO}}$.
2. $R F$ outputs terminated $50 \Omega \pm 1 \%$ to $V_{\text {DDA }}$.
3. Output power set to +2.5 dBm .
4. $I_{D D X}$ denotes $I_{D D D}+I_{-C P}+I_{D D _S D}+I_{V C O}$.
5. $I_{\text {DDA }}$ is dependent on the value of the MO output divider. The numbers indicated for $I_{\text {DDA }}$ show the current consumption when using the output divider $\mathrm{MO}=64$, for which input frequency $=40 \mathrm{MHz}$, doubler is enabled, feedback divider $=50$, and $I_{_} \mathrm{CP}=2.19 \mathrm{~mA}$.
6. In power-down mode, VCO calibration by writing to register 0 should not be performed. Doing so will increase power-down current by 10 mA . CE pin must be pulled high before powering up the device.

Table 82. Output Divider Incremental Current ${ }^{[1]}$

Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Output Divider Supply Current	Divide by 2		6		mA
	Divide by 4		6		mA
	Divide by 8		1		mA
	Divide by 16		1		mA
	Divide by 32		2	mA	
	Divide by 64		2	mA	

1. RF output divider ($\div \mathrm{MO}$) has an incremental increase in current as the divider value increases. This specification is the incremental current change per output divider step. For example, current of divide-by- 2 is 6.5 mA more than divide-by- 1 , current of divide-by- 4 is 7 mA more than divide-by- 2 , and so on. The total increase from $\div 1$ to $\div 64$ is $6.5 \mathrm{~mA}+7 \mathrm{~mA}+1 \mathrm{~mA}+1.5 \mathrm{~mA}+2 \mathrm{~mA}+2 \mathrm{~mA}=20 \mathrm{~mA}$.

Table 83. Typical Current by Power Domain ${ }^{[1]}$

Pin Name	Pin Number	Typical Current	Unit
$V_{-C P}$	6	27	mA
$\mathrm{~V}_{\text {VCO }}$	16,17	37	mA
$\mathrm{~V}_{\text {DDD }}$	28	1	mA
$\mathrm{~V}_{\text {DD_SD }}$	32	6	mA
$\mathrm{~V}_{\text {DDA }}$	10	61	mA

1. Operating conditions are:

REF_IN $=40 \mathrm{MHz}$
$\mathrm{D}=1$ (Ref Doubler is on)
INT = 50 (integer mode)
RF divider $=\div 2$
RF_OUT $=2 \mathrm{GHz}$
$R_{\text {POWER }}=+2.5 \mathrm{dBm}$
Charge pump $=2.19 \mathrm{~mA}$

Table 84. LVCMOS DC Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}^{[1]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
V_{IH}	Input High Voltage	MUTE, CE		1.8		$V_{\text {DDx }}$	V
		$\begin{aligned} & \text { SDI, SCLK, } \\ & \text { nCS } \end{aligned}$		1.5		$V_{\text {DDx }}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3		0.6	V
I_{H}	Input High Current	SDI, MUTE, CE	$\mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.8 \mathrm{~V}$			5	$\mu \mathrm{A}$
		SCLK, nCS	$\mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$			150	$\mu \mathrm{A}$
IIL	Input Low Current	SDI, MUTE, CE	$\mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
		SCLK, nCS	$\mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\begin{aligned} & \text { MUX_OUT, } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=- \\ & 500 \mu \mathrm{~A} \end{aligned}$		$V_{D D X}-0.4$		V
VoL	Output Low Voltage	$\begin{aligned} & \text { MUX_OUT, } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DDx}}=3.465 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}= \\ & 500 \mu \mathrm{~A} \end{aligned}$		0.4		V

1. $V_{D D X}$ denotes $V_{D D D}, V_{-C P}, V_{D D}$ SD,$V_{V C O}$.

6.3 AC Electrical Characteristics

Table 85. AC Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}[1]$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
REF_IN	Input Reference Frequency ${ }^{[2]}$		Ref doubler disabled	5		310	MHz
			Ref doubler enabled	5		100	MHz
V_{PP}	Input Sensitivity	REF_IN	Biased at $\mathrm{V}_{\text {DDA }} / 2{ }^{[3]}$	0.7		$\mathrm{V}_{\text {DDA }}$	V
fvCo	VCO Frequency		Fundamental VCO mode	2200		4400	MHz
RF_IN ${ }_{\text {CLK }}$	External Clock provided to RF_IN		SEL_M0_Mux set to 1	$5{ }^{[4]}$		4400	MHz
$V_{\text {PP }}$	Input Sensitivity	RF_IN	Biased at $\mathrm{V}_{\text {DDA }} / 2{ }^{[3]}$		1		V
$\mathrm{f}_{\text {RF_OUT }}$	Output Frequency		Divider values: $1,2,4,8,16,32$, 64	34.375		4400	MHz
$\mathrm{f}_{\text {PFD }}$	PFD Frequency		Fractional mode: SDM type = SSMF-II			110	MHz
			Fractional mode: SDM type = SSMF-B			88	MHz
			Integer mode			310	MHz
$\mathrm{K}_{\mathrm{Vco}}$	VCO Sensitivity				69		MHz/V
tock	PLL Lock Time		Time from low to high nCS until low to high LD		86		$\mu \mathrm{s}$
-	Output Power Variation				± 1		dB
-	RF Output Power		Muted		<-80		dBm
-	Min/Max VCO tuning voltage				$0.5 / 2.5$		V

1. $\mathrm{V}_{\mathrm{DDX}}$ denotes $\mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{\mathrm{CP}}, \mathrm{V}_{\mathrm{DD}} \mathrm{SD}, \mathrm{V}_{\mathrm{VCO}}$.
2. For REF_IN $<10 \mathrm{MHz}$, the slew rate must be $>21 \mathrm{~V} / \mu \mathrm{s}$.
3. AC-coupling the reference signal ensures $\mathrm{V}_{\mathrm{DDA}} / 2$ biasing.
4. For $R F _I N<5 M H z$, the slew rate must be $>1000 \mathrm{~V} / \mu \mathrm{s}$.

Table 86. RF_OUT ${ }_{[A: B]}$ Phase Noise and Jitter Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}[1][2][3]$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
tjit(Ø)	RMS Phase Jitter (random)	$\mathrm{f}=2 \mathrm{GHz}$ Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$	155	181	209	fs
$\varphi_{N}(100)$	RF Output Phase Noise Performance at 2 GHz	100 Hz offset from carrier	-107	-97	-87	$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{k})$		1 kHz offset from carrier	-114	-106	-98	$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(10 \mathrm{k})$		10kHz offset from carrier	-108	-105	-102	$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{\mathrm{N}}(100 \mathrm{k})$		100 kHz offset from carrier	-113	-111	-109	$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{M})$		1 M offset from carrier	-135	-133	-131	$\mathrm{dBc} / \mathrm{Hz}$

Table 86. RF_OUT ${ }_{[A: B]}$ Phase Noise and Jitter Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}[1][2][3]$ (Cont.)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
tjit(Ø)	RMS Phase Jitter (random)	$f=201.5 \mathrm{MHz}$ Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		372		fs
$\varphi_{N}(100)$	RF Output Phase Noise Performance at 201.5 MHz	100 Hz offset from carrier		-104		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{k})$		1 kHz offset from carrier		-119		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(10 \mathrm{k})$		10kHz offset from carrier		-128		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(100 k)$		100 kHz offset from carrier		-132		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{M})$		1M offset from carrier		-141		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}($ SYNTH)	Normalized Phase Noise Floor			-228		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 / f)$	Normalized 1/f Noise ${ }^{[4]}$	10 kHz offset; normalized to 1 GHz		-122		$\mathrm{dBc} / \mathrm{Hz}$

1. Internal VCO is used.
2. $V_{D D X}$ denotes $V_{D D D}, V_{C P}, V_{D D}$ SD,$V_{V C O}$.
3. Output power setting $=+11.5 \mathrm{dBm}$.
4. $\varphi_{N}(1 / f)=\varphi_{N}\left(R F_{-} O U T\right)-10 \log (10 k H z / f)-10 \log \left(f_{R F}\right.$ ouT $\left./ 1 \mathrm{GHz}\right)$ where $\varphi_{N}(1 / f)$ is the $1 / f$ noise contribution at a RF_OUT frequency ($f_{\text {RF_OUT }}$) and at a frequency offset f.

Table 87. RF_OUT ${ }_{[A: B]}$ Phase Noise and Jitter Characteristics, $\mathrm{V}_{\mathrm{DDX}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}[1][2][3]$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
tjit(Ø)	RMS Phase Jitter (random)	$\mathrm{f}=3.5 \mathrm{GHz}$ Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		179		fs
$\varphi_{N}(100)$	RF Output Phase Noise Performance at 3.5 GHz	100 Hz offset from carrier		-91		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{k})$		1 kHz offset from carrier		-99		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(10 \mathrm{k})$		10 kHz offset from carrier		-103		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(100 k)$		100 kHz offset from carrier		-107		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{M})$		1M offset from carrier		-121		$\mathrm{dBc} / \mathrm{Hz}$
tjit(Ø)	RMS Phase Jitter (random)	$\mathrm{f}=4.3 \mathrm{GHz}$ Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		103		fs
$\varphi_{N}(100)$	RF Output Phase Noise Performance at 4.3 MHz	100 Hz offset from carrier		-89		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{k})$		1 kHz offset from carrier		-99		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(10 \mathrm{k})$		10 kHz offset from carrier		-105		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(100 k)$		100kHz offset from carrier		-112		$\mathrm{dBc} / \mathrm{Hz}$
$\varphi_{N}(1 \mathrm{M})$		1M offset from carrier		-123		$\mathrm{dBc} / \mathrm{Hz}$

1. Internal VCO is used.
2. $\mathrm{V}_{\mathrm{DDX}}$ denotes $\mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{-} \mathrm{CP}, \mathrm{V}_{\mathrm{DD}} \mathrm{SD}, \mathrm{V}_{\mathrm{VCO}}$.
3. Output power setting $=+11.5 \mathrm{dBm}$.

7. Phase Noise Plots

Figure 12. Phase Noise at 2 GHz (3.3V)

Figure 13. Phase Noise at 201.5 MHz (3.3V)

8. Applications Information

8.1 Loop Filter Calculations

$8.2 \quad 2^{\text {nd }}$ Order Loop Filter

This section helps design a $2^{\text {nd }}$ order loop filter for the 8V97052. A general $2^{\text {nd }}$ order loop filter is shown in Figure 14. Step-by-step calculations to determine Rz, Cz and Cp values for a desired loop bandwidth are described below. Required parameters are provided. A spreadsheet for calculating the loop filter values is also available.

Figure 14. Typical ${ }^{\text {nd }}$ Order Loop Filter

1. Determine desired loop bandwidth fc.
2. Calculate Rz:
$R z=\frac{2 * \pi * f_{c} * N}{I c p * K v c o}$
Where,
Icp is charge pump current. Icp is programmable from $310 \mu \mathrm{~A}$ to 5 mA .
\mathbf{N} is effective feedback divider. \mathbf{N} must be programmed into the following value.
$N=\frac{F v c o}{F p d}$
$\mathrm{F}_{\mathrm{Vco}}$ is VCO frequency.
VCO frequency range: 2200 MHz to 4400 MHz
Fpd is phase detector input frequency.
$F p d=\frac{F_{-} r e f}{P v}$
F_ref is reference clock (REF_IN) input frequency.
$\mathbf{P v}$ is overall pre-divider setting.
Kvco is VCO gain. Kvco $=40 \mathrm{MHz} / \mathrm{V}$
3. Calculate Cz :
$C z=\frac{\alpha}{2 * \pi^{*} f_{c} * R z}$
Where,
$\alpha=\mathrm{fc} / \mathrm{fz}$, user can determine an α number. $\alpha>6$ is recommended.
$\mathbf{f z}$ is frequency at zero.
4. Calculate Cp:
$C p=\frac{C z}{\alpha^{*} \beta}$
Where,
$\beta=\mathrm{fp} / \mathrm{fc}$, user can determine β number.
$\beta>4$ is recommended.
$f p$ is frequency at pole.
5. Verify Phase Margin (PM)
$P M=\arctan \left(\frac{b-1}{2 * \sqrt{b}}\right)$
Where,
$b=1+\frac{C z}{C p}$
The phase margin (PM) should be greater than 50°.
A spreadsheet for calculating the loop filter component values is available at www.renesas.com. To use the spreadsheet, the user simply enters the following parameters:

$$
\text { fc, } F_{-} \text {ref, } P_{V}, \operatorname{Icp}, F_{V C O}, \alpha \text { and } \beta \text {. }
$$

The spreadsheet will provide the component values, Rz, Cz, and Cp as the result. The spreadsheet also calculates the maximum phase margin for verification.

$8.3 \quad 3^{\text {rd }}$ Order Loop Filter

This section helps design a $3^{\text {rd }}$ order loop filter for the 8 V 97052 . A general $3^{\text {rd }}$ order loop filter is shown in Figure 15.

Figure 15. Typical $3^{\text {rd }}$ Order Loop Filter

The Rz, Cz and Cp can be calculated as $2^{\text {nd }}$ order loop filter.
The following equation help determine the $3^{\text {rd }}$ order loop filter Rp2 and Cp 2 .
Pick an Rp2 value. Rp2 $\sim 1.5 x R z$ is suggested.
$C_{P 2}=\frac{R_{Z} * C_{P}}{R_{P 2} * \gamma}$
Where,
γ is ratio between the $1^{\text {st }}$ pole frequency and the $2^{\text {nd }}$ pole frequency. $\gamma>4$ is recommended.

8.4 Recommendations for Unused Input and Output Pins

8.4.1 Inputs

8.4.1.1 LVCMOS Control Pins

All control pins have internal pull-up and pull-down resistors; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

8.4.2 Outputs

8.4.2.1 Output Pins

For any unused output, it can be left floating and disabled.

8.5 Case Temperature Considerations

This device supports applications in a natural convection environment which does not have any thermal conductivity through ambient air. The Printed Circuit Board (PCB) is typically in a sealed enclosure without any natural or forced air flow and is kept at or below a specific temperature. The device package design incorporates an exposed pad (ePad) with enhanced thermal parameters which is soldered to the PCB where most of the heat escapes from the bottom exposed pad. For this type of application, it is recommended to use the junction-to-board thermal characterization parameter $\Psi_{\mathrm{JB}}(\mathrm{Psi}-\mathrm{JB})$ to calculate the junction temperature $\left(T_{\mathrm{J}}\right)$ and ensure it does not exceed the maximum allowed junction temperature in the Absolute Maximum Rating table.
The junction-to-board thermal characterization parameter, Ψ_{JB}, is calculated using the following equation:
$\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\mathbf{C B}}+\Psi_{\mathrm{JB}} \times \mathbf{P}_{\mathbf{d}}$, Where

- $\mathbf{T}_{\mathbf{J}}=$ Junction temperature at steady state condition in $\left({ }^{\circ} \mathrm{C}\right)$.
- $\mathbf{T}_{\mathbf{C B}}=$ Case temperature (Bottom) at steady state condition in $\left({ }^{\circ} \mathrm{C}\right)$.
- $\Psi_{\mathrm{JB}}=$ Thermal characterization parameter to report the difference between junction temperature and the temperature of the board measured at the top surface of the board.
- $\mathbf{P}_{\mathbf{d}}=$ power dissipation (W) in desired operating configuration.

The ePad provides a low thermal resistance path for heat transfer to the PCB and represents the key pathway to transfer heat away from the IC to the PCB. It's critical that the connection of the exposed pad to the PCB is properly constructed to maintain the desired IC case temperature ($T_{C B}$). A good connection ensures that temperature at the exposed pad $\left(T_{C B}\right)$ and the board temperature $\left(T_{B}\right)$ are relatively the same. An improper
connection can lead to increased junction temperature, increased power consumption and decreased electrical performance. In addition, there could be long-term reliability issues and increased failure rate.

Example calculation for junction temperature $\left(T_{J}\right): T_{J}=T_{C B}+\Psi_{J B} \times P_{d}$

Package type:	32 -Lead VFQFPN
Body size:	$3 \times 3 \times 0.9 \mathrm{~mm}$
ePad size:	$3.15 \times 3.15 \mathrm{~mm}$
Thermal via:	4×4 matrix
Ψ_{JB}	$0.34^{\circ} \mathrm{C} / \mathrm{W}$
T_{CB}	$105^{\circ} \mathrm{C}$
P_{d}	0.6618 W

For the variables above, the junction temperature is equal to $105.2^{\circ} \mathrm{C}$. Since this is below the maximum junction temperature of $125^{\circ} \mathrm{C}$, there are no long term reliability concerns.

9. Reliability Information

Table 88. θ_{JA} vs. Air Flow Table for a 32-VFQFN

θ_{JA} vs. Air Flow			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
Multi-Layer PCB, JEDEC Standard Test Boards	$34.34^{\circ} \mathrm{C} / \mathrm{W}$	$30.7^{\circ} \mathrm{C} / \mathrm{W}$	$29.12^{\circ} \mathrm{C} / \mathrm{W}$

Table 89. θ_{JB} vs. Air Flow Table for a 32-VFQFN

$\theta_{\mathrm{JB}}{ }^{[1]}$ vs. Air Flow	
Meters per Second	$\mathbf{0}$
Multi-Layer PCB, JEDEC Standard Test Boards	$0.472^{\circ} \mathrm{C} / \mathrm{W}$

1. θ_{JB} is independent of airflow.

10. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

11. Marking Diagram

- Line 1 denotes the part number prefix.
- Line 2 and 3 indicate the part number.
- Line 4 denotes the following:
- "YYWW" is the last digit of the year and week that the part was assembled.
- "\$" denotes mark code

12. Ordering Information

Part Number	Marking	Package	Carrier Type	Temp. Range
8V97052NLGI	IDT8V97052NLGI	32-VFQFPN, Lead Free	Tray	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
8V97052NLGI8	IDT8V97052NLGI	32-VFQFPN, Lead Free	Tape and Reel	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Table 90. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
NLGI8	Quadrant 1 (EIA-481-C)	USER DIRECTION OF FEED

13. Revision History

Revision	Date	Description
-	Feb 6, 2023	Updated POD links in Ordering Information.
1.1	May 20, 2021	- Updated Features, RF_IN Input, RF_IN Input, and DC Electrical Characteristics - Completed other minor changes
1.0	Apr 29, 2021	Initial release.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

