
 Application Note

R01AN7127EU0200 Rev.2.00 Page 1 of 36
Apr.05.24

Renesas RA Family

High Performance with RA8 MCU using Arm® Cortex®-
M85 core with Helium™
Introduction
This application note describes the creation of applications with improved performance with Renesas RA8
MCUs using CM85 core with Helium™. It is intended to highlight the performance advantages of the CM85
core, including low latency operation. Helium™, Arm’s M-Profile vector extension with integer and floating-
point support enables advanced Digital Signal Processing (DSP), Machine Learning (ML) capabilities and
helps accelerate compute-intensive applications such as endpoint Artificial Intelligence (AI), ML.

This application note walks you through all the steps necessary to achieve higher performance, including:

• Application overview
• Application highlights
• Tool configuration
• Application confirmation

Required Resources
Development tools and software

• e2 studio version: 2024-01.1 (24.1.1)
• LLVM Embedded Toolchain for Arm v17.0.1
• Renesas Flexible Software Package (FSP) v5.2.0 or later.

Hardware

• Renesas EK-RA8M1 kit (RA8M1 MCU Group)

Reference Manuals
• RA Flexible Software Package Documentation Release v5.2.0
• Renesas RA8M1 Group User’s Manual Rev.1.10
• EK-RA8M1-v1.0 Schematics

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 2 of 36
Apr.05.24

Contents
1. Application Overview………………………………………………………………………..………….3

2. Arm® Cortex®-M85 Core and Helium™ Technology .. 3
2.1 Arm® Cortex®-M85 core ... 3
2.2 Renesas RA8 MCU ... 4
2.3 Single Instruction Multiple Data ... 5
2.4 Helium™ Applications ... 6

3. Helium™ Support in Renesas FSP and LLVM Arm Toolchain .. 8

4. Application Project ... 9
4.1 Vector Multiply Accumulate Instruction VMLA Example ... 11
4.2 Vector Instruction VMLADAVA Example ... 14
4.3 ARM DSP Dot Product Example ... 17
4.4 Performance Improvement .. 19
4.4.1 Tightly Coupled Memory (TCM) .. 19
4.4.2 Improve Performance Using DTCM .. 22
4.4.3 Improve Performance Using ITCM .. 23
4.5 Improve Performance by Utilizing Data Cache ... 24
4.6 Using General Purpose (GPT) Timer for Benchmarking ... 26

5. Verify the Project ... 27
5.1 Import The Projects ... 27
5.2 Build Project .. 27
5.3 Download and Run Project .. 29
5.4 Benchmarking Performance .. 31
5.4.1 VMLA Project HELIUM_VMLA_EK_RA8M1 ... 31
5.4.2 VMLAVADA Project HELIUM_VMLADAVA_EK_RA8M1 ... 32
5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8M1 .. 33

6. Conclusion ... 34

Revision History .. 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 3 of 36
Apr.05.24

1. Application Overview
The application projects accompanying this document showcase the performance advantages of the
Renesas RA8 MCU with CM85 core. Helium™ intrinsics and Arm® CMSIS DSP Library functions are
benchmarked to highlight the improvements versus the scalar version of these intrinsics.

It also utilizes Tightly Coupled Memory (TCM) and caches together with Helium™ for further performance
improvement.

2. Arm® Cortex®-M85 Core and Helium™ Technology
Arm® Helium™ technology is the M-profile Vector Extension (MVE) for the Arm® Cortex®-M processor series.
It is part of the ARMv8.1-M architecture and enables developers to realize a performance uplift for DSP and
ML applications. Helium™ technology provides optimized performance using Single Instruction Multiple Data
(SIMD) to perform the same operation simultaneously on multiple data. There are two variants of MVE, the
integer and floating-point variant:

• MVE-I operates on 32-bit, 16-bit, and 8-bit data types, including Q7, Q15, and Q31.

• MVE-F operates on half-precision and single-precision floating-point values.

MVE operations are divided orthogonally in two ways, lanes, and beats.

• Lanes

Lane is a portion of a vector register or operation. The data that is put into a lane is referred to as an
element. Multiple lanes can be executed per beat. There are four beats per vector instruction. The
permitted lane widths, and lane operations per beat, are:

 For a 64-bit lane size, a beat performs half of the lane operation.

 For a 32-bit lane size, a beat performs a one lane operation.

 For a 16-bit lane size, a beat performs a two-lane operation.

 For an 8-bit lane size, a beat performs four lane operations.

• Beats

Beat is a quarter of an MVE vector operation. Because the vector length is 128 bits, one beat of a
vector add instruction equates to computing 32 bits of result data. This is independent of lane width.
For example, if a lane width is 8 bits, then a single beat of a vector add instruction would perform
four 8-bit additions. The number of beats for each tick describes how much of the architectural state
is updated for each architecture tick in the common case. Systems are classified by:

 In a single-beat system, one beat might occur for each tick.

 In a dual-beat system, two beats might occur for each tick.

 In a quad-beat system, four beats might occur for each tick.

Cortex®-M85 implements a dual-beat system, and it supports overlapping up to two beat-wise MVE
instructions at any time so that an MVE instruction can be issued after another MVE instruction without
additional stall. Refer to Arm® Cortex®-M85 Processor Devices for more information.

2.1 Arm® Cortex®-M85 core
Main features of Arm® Cortex®-M85 core in Renesas RA8 MCU are as follows.

• Maximum operating frequency: up to 480 MHz

• Arm® Cortex®-M85 core

– Revision: (r0p2-00rel0)

– ARMv8.1-M architecture profile

– Armv8-M Security Extension

– Floating Point Unit (FPU) compliant with the ANSI/IEEE Std 754-2008

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 4 of 36
Apr.05.24

 Scalar half, single, and double-precision floating-point operation

– M-profile Vector Extension (MVE)

 Integer, half-precision, and single-precision floating-point MVE (MVE-F)

– Helium™ technology is M-profile Vector Extension (MVE)

• Arm® Memory Protection Unit (Arm MPU)

– Protected Memory System Architecture (PMSAv8)

– Secure MPU (MPU_S): 8 regions

– Non-secure MPU (MPU_NS): 8 regions

• SysTick timer

– Embeds two Systick timers: Secure instance (SysTick_S) and Non-secure instance (SysTick_NS)

– Driven by CPUCLK or SYSTICKCLK (MOCO/8).

• CoreSight™ ETM-M85

Figure 1 shows the block diagram of Arm® Cortex®-M85 core.

Figure 1. Cortex®-M85 Core Block Diagram

2.2 Renesas RA8 MCU
The RA8M1 MCU group incorporates a high-performance Arm® Cortex®-M85 core as shown in the previous
section with Helium™ running up to 480 MHz with the following features.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 5 of 36
Apr.05.24

• Up to 2 MB code flash memory

• 1 MB SRAM (128 KB of TCM RAM, 896 KB of user SRAM)

• Octal Serial Peripheral Interface (OSPI)

• Ethernet MAC Controller (ETHERC), USBFS, USBHS, SD/MMC Host Interface

• Analog peripherals

• Security and safety features.

Figure 2. Block Diagram of Renesas RA8M1 MCU

2.3 Single Instruction Multiple Data
Most Arm® instructions are Single Instruction Single Data (SISD) instructions. The SISD instruction only
operates on a single data item. It requires multiple instructions to process data items.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 6 of 36
Apr.05.24

The Single Instruction Multiple Data (SIMD), on the other hand, performs the same operation on multiple
items of same data type, concurrently. It means invoking/executing a single, multiple operations are being
performed simultaneously.

Figure 3 shows the operation of VADD.I32 Qd, Qn, Qm instruction that adds the four pairs of 32-bit data
together. Firstly, the four pairs of 32-bit input data are packed into separate lanes in two 128-bit Qn, Qm
registers. Then, each lane in the 1st source register is then added to the corresponding lane in the 2nd source
register. The results are stored in the same lane in the destination register Qd.

Figure 3. Operation of VADD.I32 Qd, Qn, Qm Instruction

2.4 Helium™ Applications
Digital Signal Processing (DSP) and Machine Learning (ML) are the main target applications for Helium™.
Helium™ offers significant performance increases in these applications. Typically, Helium applications are
created using Helium™ intrinsics.

Helium™ instructions are made available as intrinsic routines through the arm_mve.h in LLVM Embedded
Toolchain for Arm toolchain installation, located in “<e2studio installation
folder>\toolchains\llvm_arm\LLVMEmbeddedToolchainForArm-17.0.1-Windows-x86_64\lib\clang\17\include”.
They give users access to the Helium™ instructions from C and C++ without the need to write assembly
code.

Many functions in CMSIS-DSP and CMSIS-NN libraries have been optimized by Arm to use the Helium™
instructions instead. Renesas FSP supports both libraries, making it easier for users to develop applications
based on these libraries. In the FSP configuration, select Arm DSP Library Source (CMSIS5-DSP version
5.9.0 or later) and Arm NN Library Source (CMSIS-NN version 4.1.0 or later) when generating projects to
add CMSIS-DSP and CMSIS-NN supports to your project.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 7 of 36
Apr.05.24

Figure 4. CMSIS-DSP and CMSIS-NN supports in Renesas FSP
CMSIS-DSP and CMSIS-NN can also be added using Stacks tab in FSP configurator, as shown below.

Figure 5. Adding CMSIS-DSP and CMSIS-NN Using Stacks Tab in FSP Configurator

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 8 of 36
Apr.05.24

3. Helium™ Support in Renesas FSP and LLVM Arm Toolchain
LLVM Embedded Toolchain for Arm supports Helium™ instructions with the compiler settings. When
generating a RA8M1 project using e2 studio and Flexible Software Package (FSP), CPU settings and
software settings are pre-optimized for Cortex®-M85 core and the CMSIS Helium™ support. Refer to the
Flexible Software Package Documentation for the steps to create a project for RA MCU.

Figure 6. Create an EK-RA8M1 Project using e2 studio

The Cortex®-M85 core will be selected in the tool settings, as shown below.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 9 of 36
Apr.05.24

Figure 7. Example of Tool Settings
Even though, the project settings are pre-optimized for Cortex®-M85, they can be customized if needed.
Macro definitions can be added to select project configurations to enable and disable some portions of the
code in a project. Go to Project->C/C++ Project Settings to change setups for the project if needed.

4. Application Project
There are three projects accompanying this application note. All have the scalar code equivalent to Helium™
functions.

• The Vector Multiply Accumulate (VMLA) and the scalar code equivalent.

• The Vector Multiply Accumulate Add Accumulate Across Vector (VMLADAVA) and the scalar code
equivalent.

• The ARM® DSP Dot Product function and the scalar code equivalent.

The projects are configured in various settings to utilize DTCM, ITCM, and cache to showcase the
performance improvements of Helium technology compared to scalar code.

Figure 8. Application Projects in the Workspace
The available configuration for each project is as follows.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 10 of 36
Apr.05.24

Figure 9. Configuration Available in Application Projects
Where I32_SCALAR is for the scalar code, I32_HELIUM is for the Helium code, I32_HELIUM_DTCM is for
the Helium code that utilizes DTCM, and I32_HELIUM_ITCM is for the Helium code placed ITCM.

The optimization level of the projects in this application note are set to "-O2".

Figure 10. Compiler Optimization Setting
The _CONFIG_HELIUM_ symbol is preset to select scalar operation, Helium operation, or enable the code
to utilize DTCM and ITCM together with Helium operation.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 11 of 36
Apr.05.24

Figure 11. _CONFIG_HELIUM_ symbol is Used to Select Helium Code and Scalar Code Options

4.1 Vector Multiply Accumulate Instruction VMLA Example
In VMLA instruction, each element in the input vector2 is multiplied by the scalar value. The result is added
to the respective element of input vector1. The results are stored in the destination register.

The steps of VMLA.S32 Qda, Qn, Rm instruction are shown in the following diagram:

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 12 of 36
Apr.05.24

Figure 12. VMLA Operation
 The intrinsic function vmlag_n_s32 in Figure 13 is used to showcase the performance of VMLA.S32 Qda,
Qn, Rm instruction versus the scalar equivalent.

Figure 13. Example of VMLA Instruction using Intrinsics and Disassembly Code
Figure 14 shows the scalar code equivalent to the Helium code in Figure 13.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 13 of 36
Apr.05.24

Figure 14. Example of Scalar Code Equivalent of VMLA and Typical Disassembly Code Without Auto
Vectorization

Notes that the LLVM for Arm v17.0.1 supports auto vectorization by default and generates MVE instructions
equivalent to scalar code automatically where applicable.

Figure 15. Example of Scalar Code Equivalent of VMLA and Its Vectorization Code Generated by
LLVM for Arm v17.0.1

To disable auto vectorization, add “-fno-vectorize” option to compiler setting as shown in Figure 16.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 14 of 36
Apr.05.24

Figure 16. Example of Disabling Auto Vectorization Option in LLVM Compiler

4.2 Vector Instruction VMLADAVA Example
The VMLADAVA instruction multiplies the corresponding lanes of two input vectors, then sums these
individual results to a produce a single value.

The steps of VMLADAVA.S32 Rda, Qn, Qm instruction are shown in the following diagram:

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 15 of 36
Apr.05.24

Figure 17. VMLADAVA Operation
The intrinsic function vmladavaq_s32 in Figure 18 is used to showcase the performance of VMLADAVA. S32
Rda, Qn, Qm instruction versus the scalar equivalent.

Figure 18. Example of VMLADAVA Instruction using Intrinsics
Figure 19 shows the scalar code equivalent to the Helium™ code in Figure 18.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 16 of 36
Apr.05.24

Figure 19. Example of Scalar Code Equivalent of VMLADAVA Instruction and Typical Disassembly
Code without Auto Vectorization

The LLVM for Arm v17.0.1 supports vectorization and generates MVE instructions equivalent to scalar code
automatically as shown in Figure 20.

Figure 20. Example of Scalar Code Equivalent of VMLADAVA Instruction and Its Vectorization Code
Generated by LLVM for Arm v17.0.1

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 17 of 36
Apr.05.24

4.3 ARM DSP Dot Product Example
The dot product example uses the arm_dot_product_f32 function in the Arm DSP library to calculate the dot
product of two input vectors by multiplying element by element and sum them up. The performance of the
Helium version of arm_dot_product_f32 will be compared with its scalar version.

Figure 21. arm_dot_product_f32 Function with Helium™ Code
Renesas Flexible Software Package FSP supports Arm DSP Library Source for Cortex®-M85 that uses
Helium intrinsics. It will improve performance significantly compared to scalar code. Select Arm DSP Library
Source in Project Configurator to add the DSP source to your project, as shown in Figure 22.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 18 of 36
Apr.05.24

Figure 22. Adding Arm Library DSP Source in FSP Configurator
Click Generate Project Content, the Arm DSP library source will be added to the project.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 19 of 36
Apr.05.24

Figure 23. Arm Library DSP Source Added in FSP Project

4.4 Performance Improvement
You can utilize Tightly Coupled Memory (TCM) and Cache together with Helium™ to achieve higher
performance. Typically, TCM provides single-cycle access and avoids delays in data access. Critical routines
and data can be placed in TCM areas to ensure faster access. TCM does not use caches.

4.4.1 Tightly Coupled Memory (TCM)
The 128 KB TCM memory in RA8 MCU consists of 64 KB ITCM (Instruction TCM) and 64 KB DTCM (Data
TCM). Note that accessing TCM is not available in CPU Deep Sleep mode, Software Standby mode, and
Deep Software Standby mode.

Figure 24 shows ITCM and DTCM in the Local CPU Subsystem.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 20 of 36
Apr.05.24

Figure 24. ITCM and DTCM in Local CPU Subsystem
FSP initializes both ITCM and DTCM areas by default. The linker script has defined sections for ITCM and
DTCM areas, making it easy to utilize in user applications.

Figure 25 and Figure 26 are snapshots of ITCM and DCTM locations in RA8 MCU.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 21 of 36
Apr.05.24

Figure 25. Example of ITCM Areas in RA8 MCU

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 22 of 36
Apr.05.24

Figure 26. Example of DTCM Areas in RA8 MCU

4.4.2 Improve Performance Using DTCM
You can place data in the DTCM section (.dtcm_data) in an FSP-based project using the _attribute_
directive, as shown in Figure 27.

Figure 27. Placing Variables and Data in DTCM Section

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 23 of 36
Apr.05.24

The above data placement can be confirmed using the memory map generated by the compiler.

Figure 28. Example of Variables and Data Placed in DTCM Area in Memory Map

4.4.3 Improve Performance Using ITCM
One of the methods to place some portions of the code in the ITCM section (.itcm_data) is using the
attribute directive, as shown in Figure 29.

Figure 29. Example of Placing a Function in ITCM Section
You can confirm code placement using the .map file generated by the compiler or when debugging the
project.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 24 of 36
Apr.05.24

Figure 30. Function Placed in ITCM Section Shown on Debugger

4.5 Improve Performance by Utilizing Data Cache
When a function utilizes long loops, it executes the same code repeatedly. Furthermore, in many
applications, data access may be repeated and sequential. Performance in these scenarios can improve
significantly with cache enabled. Notes that data cache is not enabled in the projects by default.

In FSP, the instruction cache enable is done in a function named SystemInit in system.c, as shown in Figure
31 and Figure 32.

Figure 31. Macro Definition to Enable Cache in system.c in FSP

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 25 of 36
Apr.05.24

Figure 32. Code to Enable Instruction Cache in FSP
The application projects have a setting to enable data cache. Add the macro definition
“_DCACHE_ENABLE_=1” in the project option to enable data cache. Even though data cache improves
performance, it can cause concurrency and coherency issues. It is good practice to enable the cache for
application code that has repeated access to the same set of data.

Figure 33. Example of Data Cache Enable in Application Project

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 26 of 36
Apr.05.24

Example code to enable and disable data cache are shown in Figure 34 and Figure 35.

Figure 34. Example Code to Enable DCACHE

Figure 35. Example Code to Disable DCACHE
Another method to enable data cache is using FSP Configurator: BSP->Properties->Settings->MCU
(RA8M1) Family->Cache settings->Data cache, as shown in Figure 36.

Figure 36. Example of Data Cache Enable using FSP Configurator

4.6 Using General Purpose (GPT) Timer for Benchmarking
In the projects, GPT0 timer is used to measure time for performance benchmarking.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 27 of 36
Apr.05.24

Figure 37. Example of the Timer Code for Benchmarking

5. Verify the Project
5.1 Import The Projects
The software tools required to run the application projects are as follows.

• e2 studio version: 2024-01.1 (24.1.1) or later
• LLVM Embedded Toolchain for Arm v17.0.1 or later
• Renesas Flexible Software Package (FSP) v5.2.0 or later
• SEGGER RTT Viewer v7.94g or later
Import the projects HELIUM_VMLA_EK_RA8M1.zip, HELIUM_VMLADAVA_EK_RA8M1.zip, and
HELIUM_DOT_PRODUCT_EK_RA8M1.zip into your workspace.

5.2 Build Project
There are several configurations in each project. Select a project, then a project configuration you wish to run
before going to the next step.

Figure 38. Set Active Build Configuration
Launch configuration.xml, and click “Generate Project Content” to generate project content.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 28 of 36
Apr.05.24

Figure 39. Example of Generating Project Content
Build the active project by selecting Project->Build Project.

Figure 40. Build the Active Project

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 29 of 36
Apr.05.24

5.3 Download and Run Project
The EK‑RA8M1 kit has a few switch settings that must be configured before running the projects associated
with this application note. These switches must be returned to the default settings per the EK‑RA8M1 user
manual. In addition to these switch settings, the board also contains a USB debug port and connectors to
access the J-Link® programming interface.

Table 1. Switch settings for EK-RA8M1
Switch Setting
J8 Jumper on pins 1-2
J9 Open

Connect J10 on EK-RA8M1 kit to USB port on your PC, open and start SEGGER RTT Viewer with the below
settings.

Figure 41. SEGGER RTT Viewer
Choose the Debug Configuration you wish to run. Make sure it points to the correct .elf file.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 30 of 36
Apr.05.24

Figure 42. Start Running the Project
The operation results will be printed on SEGGER RTT Viewer, as shown in Figure 43.

Figure 43. A Helium Operation with DTCM Utilized

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 31 of 36
Apr.05.24

5.4 Benchmarking Performance
Use the “Timer counter cycle” printed on SEGGER RTT Viewer for performance benchmarking. It shows how
many GPT0 counter cycles have elapsed since the function was executed.

Figure 44. Example of Timer Counter Cycle on RTT Viewer

5.4.1 VMLA Project HELIUM_VMLA_EK_RA8M1
The performances of the function vmlaq_n_s32 in various configurations are as follows.

Figure 45. Performance Data w/o Data Cache Enable

Figure 46. Performance Chart w/o Data Cache Enable

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 32 of 36
Apr.05.24

Below are the performances of the vmlaq_n_s32 function with data cache enabled in various configurations.
To enable data cache in the project, follows steps in section 4.5, build and download it.

Figure 47. Performance Data w/ Data Cache Enable

5.4.2 VMLAVADA Project HELIUM_VMLADAVA_EK_RA8M1
The performances of the function vmladavaq_s32 in various configurations are as follows.

Figure 48. Performance Data w/o Data Cache Enable

Figure 49. Performance Chart w/o Data Cache Enable

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 33 of 36
Apr.05.24

Below are the performances of the vmladavaq_s32 function with data cache enabled in various
configurations. To enable data cache in the project, follows steps in section 4.5, build and download it.

Figure 50. Performance Data w/ Data Cache Enable

5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8M1
The performances of the ARM DSP Dot Product arm_dot_prod_f32 function in various configurations are as
follows.

Figure 51. Performance Data w/o Data Cache Enable

Figure 52. Performance Chart w/o Data Cache Enable
Below are the performances of the ARM Dot Product arm_dot_prod_f32 function with data cache enabled in
various configurations. To enable data cache in the project, follows steps in section 4.5, build and download
it.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 34 of 36
Apr.05.24

Figure 53. Performance Data w/ Data Cache Enable

6. Conclusion
The Renesas RA8 MCU with Arm® Cortex®-M85 supports significant scalar performance uplift. Furthermore,
the Tightly Coupled Memory (TCM) support in Renesas FSP makes it easier to utilize Helium intrinsics and
TCM for further improvement.

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 35 of 36
Apr.05.24

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

RA Product Information www.renesas.com/ra
RA Product Support Forum www.renesas.com/ra/forum
RA Flexible Software Package www.renesas.com/FSP
Renesas Support www.renesas.com/support

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

R01AN7127EU0200 Rev.2.00 Page 36 of 36
Apr.05.24

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.11.23 - Initial version
2.00 Apr.05.24 - Support LLVM for Arm

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Application Overview
	2. Arm® Cortex®-M85 Core and Helium™ Technology
	2.1 Arm® Cortex®-M85 core
	2.2 Renesas RA8 MCU
	2.3 Single Instruction Multiple Data
	2.4 Helium™ Applications

	3. Helium™ Support in Renesas FSP and LLVM Arm Toolchain
	4. Application Project
	4.1 Vector Multiply Accumulate Instruction VMLA Example
	4.2 Vector Instruction VMLADAVA Example
	4.3 ARM DSP Dot Product Example
	4.4 Performance Improvement
	4.4.1 Tightly Coupled Memory (TCM)
	4.4.2 Improve Performance Using DTCM
	4.4.3 Improve Performance Using ITCM

	4.5 Improve Performance by Utilizing Data Cache
	4.6 Using General Purpose (GPT) Timer for Benchmarking

	5. Verify the Project
	5.1 Import The Projects
	5.2 Build Project
	5.3 Download and Run Project
	5.4 Benchmarking Performance
	5.4.1 VMLA Project HELIUM_VMLA_EK_RA8M1
	5.4.2 VMLAVADA Project HELIUM_VMLADAVA_EK_RA8M1
	5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8M1

	6. Conclusion
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

