2 OUTPUT PCIE GEN1-2-3 SYNTHESIZER

Recommended Applications

PCle Gen1-2-3 Synthesizer for Common and SRNS-clocked systems

General Description

The IDT5V41315 is a PCle Gen1-2-3 clock synthesizer suitable for use in both Common-Clocked and Separate Reference clock with No Spread (SRNS) timing architectures. The IDT5V41315 uses a 25 MHz input to generate 4 different output frequencies. The output frequency is selectable via select pins.

Output Features

- 2-0.7V current mode differential HCSL output pairs

Features/Benefits

- 16-pin TSSOP or VFQFPN package; small board footprint
- Outputs can be terminated to LVDS; can drive a wider variety of devices
- OE control pin; greater system power management
- Industrial temperature range available; supports demanding embedded applications

Key Specifications

- Cycle-to-cycle jitter: 80ps
- Output-to-output skew: <50 ps
- PCle Gen2 phase jitter: <3.0ps RMS (Common Clock)
- PCle Gen3 phase jitter: <1.Ops RMS (Common Clock)
- Low Phase Noise: 12 KHz to $20 \mathrm{MHz}<6$ ps RMS

Block Diagram

IDT5V41315
2 OUTPUT PCIE GEN1-2-3 SYNTHESIZER

Pin Assignments

16-pin VFQFPN

Output Select Table 1 (MHz)

S1	S0	CLK(1:0), $\overline{\text { CLK(1:0) }}$
0	0	25 M
0	1	100 M
1	0	125 M
1	1	200 M

Pin Descriptions

VFQFPN Pin Number	TSSOP Pin Number	Pin Name	Pin Type	Pin Description
16	1	S0	Input	Select pin 0. See Table1. Internal pull-up resistor.
1	2	S1	Input	Select pin 1. See Table 1. Internal pull-up resistor.
2	3	NC	--	No connect.
3	4	X1/ICLK	Input	Crystal or clock input. Connect to a 25 MHz crystal or single ended clock.
4	5	X2	Output	Crystal connection. Leave unconnected for clock input.
5	6	OE	Input	Output enable. Tri-states outputs and device is not shut down. Internal pull-up resistor.
6	7	GNDXD	Power	Connect to ground.
7	8	NC	--	No connect.
8	9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference, typically 475 ohm. 9
10	10	CLK1	Output	HCSL complementary clock output 1.
11	12	CLK1	Output	HCSL true clock output 1.
12	13	GNDODA	Power	Connect to ground.
13	14	CLK0	Output	HCSL complementary clock output 0.
14	15	CLK0	Output	HCSL true clock output 0.
15	16	VDDXD	Power	Connect to voltage supply +3.3 V for crystal oscillator and digital circuit.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5V41315. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDDXD, VDDODA	4.6 V
All Inputs and Outputs	-0.5 V to VDD +0.5 V
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Junction Temperature	$125^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$
ESD Protection (Input)	2000 V min. (HBM)

DC Electrical Characteristics

Unless stated otherwise, VDD $=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMBIENT }}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Supply Voltage	V		3.135	3.3	3.465	V
Ambient Operating Temperature	$\mathrm{T}_{\text {AMBIENT }}$	Industrial Temperature range	-40	+25	+85	${ }^{\circ} \mathrm{C}$
Input High Voltage ${ }^{1}$	V_{IH}	S0, S1, OE, ICLK	2.2		VDD +0.3	V
Input Low Voltage ${ }^{1}$	$\mathrm{V}_{\text {IL }}$	S0, S1, OE, ICLK	VSS-0.3		0.8	V
Input Leakage Current ${ }^{2}$	IIL	$0<\mathrm{Vin}$ < VDD	-5		5	$\mu \mathrm{A}$
Operating Supply Current @ 100 MHz	IDD	$\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{R}_{\mathrm{P}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$		63	85	mA
	Itdoe	OE =Low		42	50	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	Input pin capacitance			7	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance			6	pF
X1, X2 Capacitance	$\mathrm{C}_{\text {INX }}$				5	pF
Pin Inductance	LPIN				5	nH
Output Impedance	Z_{O}	CLK outputs	3.0			$\mathrm{k} \Omega$
Pull-up Resistor	R_{PU}	S0, S1, OE		100		$\mathrm{k} \Omega$

1. Single edge is monotonic when transitioning through region.
2. Inputs with pull-ups/-downs are not included.

AC Electrical Characteristics - CLK0/CLK1, CLK0/CLK1

Unless stated otherwise, $\mathrm{VDD}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMBIENT }}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency				25		MHz
Output Frequency		HCSL termination	25		200	MHz
		LVDS termination	25		100	MHz
Output High Voltage ${ }^{1,2}$	V_{OH}	HCSL			850	mV
Output Low Voltage ${ }^{1,2}$	$\mathrm{V}_{\text {OL }}$	HCSL	-150			mV
Crossing Point Voltage ${ }^{1,2}$		Absolute	250		550	mV
Crossing Point Voltage ${ }^{1,2,4}$		Variation over all edges			140	mV
Jitter, Cycle-to-Cycle ${ }^{1,3}$					80	ps
Frequency Synthesis Error		All outputs		0		ppm
Rise Time ${ }^{1,3}$	t_{OR}	$\pm 150 \mathrm{mV}$	1		4	V/ns
Fall Time ${ }^{1,3}$	t_{OF}	$\pm 150 \mathrm{mV}$	1		4	V / ns
Rise/Fall Time Variation ${ }^{1,2}$					125	ps
Output to Output Skew					50	ps
Duty Cycle ${ }^{1,3}$			45		55	\%
Output Enable Time ${ }^{5}$		All outputs		50	100	ns
Output Disable Time ${ }^{5}$		All outputs		50	100	ns
Stabilization Time	$\mathrm{t}_{\text {StabLE }}$	From power-up VDD=3.3 V			1.8	ms

Note 1: Test setup is $R_{S}=33 \Omega, R_{p}=50 \Omega$ with $C_{L}=2 \mathrm{pF}, \mathrm{Rr}=475 \Omega(1 \%)$.
Note 2: Measurement taken from a single-ended waveform.
Note 3: Measurement taken from a differential waveform.
Note 4: Measured at the crossing point where instantaneous voltages of both CLK and $\overline{\text { CLK }}$ are equal.
Note 5: CLK pins are tri-stated when OE is low asserted. CLK is driven differential when OE is high.

Electrical Characteristics - Differential Phase Jitter Parameters

$T_{A}=T_{\text {AMBIENT }}$, Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	Symbol	Conditions	Min	Typ	Max	Units	Notes
Jitter, Phase	$\mathrm{t}_{\text {jphaseG1 }}$	PCle Gen 1		32	86	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphaseG2Lo }}$	PCle Gen 2 $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.7	3	ps (RMS)	1,2,3
	$\mathrm{t}_{\text {jphaseG2High }}$	$\begin{gathered} \text { PCle Gen } 2 \\ 1.5 \mathrm{MHz}<\mathrm{f}<\text { Nyquist }(50 \mathrm{MHz}) \end{gathered}$		2.3	3.1	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1,2,3
	$\mathrm{t}_{\text {jphaseG3 }}$	PCle Gen 3		0.6	1	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1,2,3
	$\mathrm{t}_{\text {jphase12K20M }}$	12kHz-20MHz			N/A	ps (RMS)	1,2,3

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ See http://www.pcisig.com for complete specs
${ }^{3}$ Applies to 100 MHz

Applications Information

External Components

A minimum number of external components are required for proper operation.

Decoupling Capacitors

Decoupling capacitors of $0.01 \mu \mathrm{~F}$ should be connected between each VDD pin and the ground plane, as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into ICS pin.

Crystal

A 25 MHz fundamental mode parallel resonant crystal should be used. This crystal must have less than 300 ppm of error across temperature in order for the IDT5V41315 to meet PCI Express specifications.

Crystal Capacitors

Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.
$\mathrm{C}_{\mathrm{L}}=$ Crystal's load capacitance in pF
Crystal Capacitors $(\mathrm{pF})=\left(\mathrm{C}_{\mathrm{L}}-8\right)$ * 2
For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF . $(16-8)^{*} 2=16$.

Current Source (Iref) Reference Resistor - R_{R}
If board target trace impedance (Z) is 50Ω, then $R_{R}=475 \Omega$ (1%), providing IREF of 2.32 mA . The output current (l_{OH}) is equal to 6^{*} IREF.

Output Termination
The PCI-Express differential clock outputs of the IDT5V41315 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI-Express Layout Guidelines section.

The IDT5V41315 can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

General PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

1. Each $0.01 \mu \mathrm{~F}$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
2. No vias should be used between decoupling capacitor and VDD pin.
3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the IDT5V41315. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Layout Guidelines

SRC Reference Clock			
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1
Rs	33	ohm	1
Rt	49.9	ohm	1

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2

Figure 1: Down Device Routing

Figure 2: PCI Express Connector Routing

Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 V	0.22 V	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS
R1a = R1b $=$ R1							
R2a = R2b = R2							

Figure 3

Cable Connected AC Coupled Application (figure 4)		
Component	Value	Note
R5a, R5b	$8.2 \mathrm{~K} 5 \%$	
R6a, R6b	$1 \mathrm{~K} 5 \%$	
Cc	$0.1 \mu \mathrm{~F}$	
Vcm	0.350 volts	

Typical PCI-Express (HCSL) Waveform

Typical LVDS Waveform

Thermal Characteristics (16-TSSOP)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	$\theta_{\text {JA }}$	Still air		78		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$1 \mathrm{~m} / \mathrm{s}$ air flow		70		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$3 \mathrm{~m} / \mathrm{s}$ air flow		68		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JC }}$			37		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Thermal Characteristics (16-VFQFPN)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	$\theta_{\text {JA }}$	Still air		63.2		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$1 \mathrm{~m} / \mathrm{s}$ air flow		55.9		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$3 \mathrm{~m} / \mathrm{s}$ air flow		51.4		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	$\theta_{\text {JC }}$			65.8		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Marking Diagrams

Notes:

1. "XXX" denotes lot number.
2. "\#" denotes die revision.
3. "YYWW" or "YWW" denotes date code
4. "\$" denotes assembly location.
5. "G" after the two-letter package code designates RoHS compliant package.
6. "I" at the end of part number indicates industrial temperature range.
7. Bottom marking: country of origin if not USA (TSSOP package only).

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5V41315PGGI	See Page 9	Tubes	16-pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$
5V41315PGGI8		Tape and Reel	16-pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$
5V41315NLGI		Trays	16-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$
5V41315NLGI8		Tape and Reel	16-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Date	Originator	Description of Change
A	$10 / 24 / 12$	J. Chao	Initial release-preliminary
B	$03 / 20 / 13$	R. Wade	1. Updated General Description verbiage. 2. Added 16-pin VFQFPN package and pinout 3. Updated pin descriptions for both TSSOP and VFQFPN 4. Minor updates to AC/DC char tables. 5. Updated Differential Phase Jitter Parameters table; removed typical specs, added 'tjphase12K20M' parameter. 6. Added 16-pin VFQFPN package drawing/dimensions, thermal characteristics, marking diagram, and ordering information
B	$07 / 30 / 13$	J. Chao	Updated device top-side marking on VFQFPN package; removed "G".
C	$09 / 20 / 13$	RDW	Changed Rise/Fall times to differential slew rates.
D	$06 / 01 / 15$	IH	Added typical values to Differential Phase Jitter table.
E	$05 / 08 / 17$	C.P.	Updated package outline drawings and legal disclaimer.

2 OUTPUT PCIE GEN1-2-3 SYNTHESIZER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

