
 Application Note

R11AN0260EU0100 Rev. 1.0 Page 1 of 38

Renesas Synergy™ Platform

S1 Series MCU Diagnostic Software User Guide
Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.
Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.
Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards.
Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and cookers / stoves tend to fall
under the classification of Class B.

This Application Note provides guidelines on flexible sample software routines to aid in complying with IEC60730
class B safety standards. These routines have been certified by VDE Test and Certification Institute GmbH and a copy
of the Test Certificate is available in the download package for this Application Note (See Note below).

Although these routines were developed using IEC60730 compliance as a basis, they can be implemented in any system
for self-testing of Renesas MCUs.

The software routines provided are to be used after reset and also during the program execution. The end user has the
flexibility of how to integrate these routines into their overall system design, but this document and the accompanying
sample code provide an example of how to do this.

It is worth noting that error-handling routines are as demanding to the user as interrupt handler routines. Since errors
covered by the software routines are very critical (e.g., PC failure), and the correct functionality cannot be assured, it is
strongly recommended that the user not only rely solely on software error handling, but also use hardware safety
mechanisms, such as using the Independent Watchdog (iWDT).

Note. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm IEC
60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm has a single sheet that
jumps to IEC 60730-1 for definitions, information and applicable paragraphs.

Target Device
Renesas Synergy S1 Series MCU

R11AN0260EU0100
Rev. 1.0

Dec 11, 2017

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 2 of 38

Contents

1. Tests ... 4
1.1 CPU .. 4
1.1.1 Software API .. 5
1.2 ROM .. 8
1.2.1 CRC32C Algorithm .. 8
1.2.2 CRC Software API ... 9
1.3 RAM .. 10
1.3.1 Algorithms .. 11
1.3.2 Software API .. 12
1.4 Clock .. 17
1.5 Independent Watchdog Timer ... 19
1.6 Voltage .. 20
1.7 ADC14 ... 21
1.8 Temperature .. 22
1.9 Port Output Enable (POE) ... 24

2. Example Usage ... 25
2.1 CPU .. 25
2.1.1 Power-Up ... 25
2.1.2 Periodic .. 26
2.2 ROM .. 26
2.2.1 Power-Up ... 26
2.2.2 Periodic .. 26
2.3 RAM .. 27
2.3.1 Power-Up ... 27
2.3.2 Periodic .. 27
2.4 Clock .. 27
2.5 Independent Watchdog Timer ... 28
2.6 Voltage .. 30
2.7 ADC14 ... 30
2.7.1 Power-Up ... 30
2.7.2 Periodic .. 30
2.8 Temperature .. 30
2.8.1 Power-Up ... 30
2.8.2 Periodic .. 31
2.9 POE .. 31

3. Benchmarking .. 31
3.1 Environment .. 31
3.2 Results ... 32

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 3 of 38

3.2.1 CPU .. 32
3.2.2 ROM .. 32
3.2.3 RAM .. 32
3.2.4 Clock .. 35
3.2.5 Independent Watchdog ... 36
3.2.6 Voltage .. 36
3.2.7 ADC14 .. 36
3.2.8 Temperature .. 36
3.2.9 Port Output Enable .. 37

4. Additional Information .. 37
4.1 Reading an IO Pin State .. 37

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 4 of 38

1. Tests
1.1 CPU
This section describes CPU tests routines. Reference IEC 60730: 1999+A1:2003 Annex H – Table H.11.12.1 CPU.

The following CPU registers are tested: R0->R12, MSP, PSP, LR, APSR, BASEPRI and CONTROL.

The source file cpu_test.c provides implementation of the CPU test using C language and relies on assembly
language function to access the registers (that is, CPU_Test_Control).

File cpu_test_coupling.c is also required to use the coupling test version of the General Purpose Registers.
Coupling test relies on assembly language functions (TestGPRsCouplingStart_A,

• TestGPRsCouplingR1_R3_A
• TestGPRsCouplingR4_R6_A
• TestGPRsCouplingR7_R9_A
• TestGPRsCouplingR10_R12_A
• TestGPRsCouplingR0_A
• TestGPRsCouplingStart_B
• TestGPRsCouplingR1_R3_B
• TestGPRsCouplingR4_R6_B
• TestGPRsCouplingR7_R9_B
• TestGPRsCouplingR10_R12_B
• TestGPRsCouplingR0_B
• TestGPRsCouplingEnd

Alternatively, the assembly language functions, CPU_Test_General_Low, CPU_Test_General_High, are used to test
GPRS registers.

The source file cpu_test.h provides the interface to the CPU tests. The file S124_registers.h includes definitions
of S124 registers.

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return values to
indicate the result of a test. Instead the user of these tests must provide an error handling function with the following
declaration:-

extern void CPU_Test_ErrorHandler(void);

The CPU test jumps to this function if an error is detected. This function must not return.

All the test functions follow the rules of register preservation following a C function call. The user can call these
functions like any normal C function without any additional responsibilities to save register values beforehand.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 5 of 38

 Software API

Table 1 Software API Source files

File name
cpu_test.h,
cpu_test_coupling.c, cpu_test.c
TestGPRsCouplingStart_A.asm
TestGPRsCouplingR1_R3_A.asm
TestGPRsCouplingR4_R6_A.asm
TestGPRsCouplingR7_R9_A.asm
TestGPRsCouplingR10_R12_A.asm
TestGPRsCouplingR0_A.asm
TestGPRsCouplingStart_B.asm
TestGPRsCouplingR1_R3_B.asm
TestGPRsCouplingR4_R6_B.asm
TestGPRsCouplingR7_R9_B.asm
TestGPRsCouplingR10_R12_B.asm
TestGPRsCouplingR0_B.asm
TestGPRsCouplingEnd.asm
CPU_Test_Control.asm
CPU_Test_General_Low.asm
CPU_Test_General_High.asm

Syntax
void CPU_TestAll(void)
Description
Runs through all the tests detailed below in the following order:

1. If using Coupling GPR Tests (*1. See below):
CPU_Test_GPRsCouplingPartA
CPU_Test_GPRsCouplingPartB

If not using Coupling GPR test:

CPU_Test_General_Low
CPU_Test_General_High

2. CPU_Test_Control
3. CPU_Test_PC

It is the calling function’s responsibility to ensure the processor is in Privileged Mode. If this function is called in
unprivileged mode, the test fails; some of the register bits are not accessible in unprivileged mode. In addition,
since in CPU_Test_Control function tests stack pointer registers (that is, MSP and PSP), disable stack pointer
monitoring (MSPMPUCTL.ENABLE = 0, PSPMPUCTL.ENABLE = 0) before running CPU_TestAll function
and restore its setting after a function return. The calling function also ensures no interrupts occur during this
test. If an error is detected, then the external function CPU_Test_ErrorHandler will be called.
For a full description, see the individual tests.

*1. A “#define USE_TEST_GPRS_COUPLING” in the code is used to select which functions are used to test
the General Purpose Registers.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 6 of 38

Syntax
void CPU_Test_GPRsCouplingPartA(void)
Description
Tests general purpose registers R0 to R12. Coupling faults between the registers are detected.
This is Part A of a complete GPR test. Use function CPU_Test_GPRsCouplingPartB to complete the test.
It is the calling function’s responsibility to ensure no interrupts occur during this test.
If an error is detected, then the external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void CPU_Test_GPRsCouplingPartB(void)
Description
Tests general purpose registers R0 to R12.Coupling faults between the registers are detected.
This is Part B of a complete GPR test. Use function CPU_Test_GPRsCouplingPartA to complete the test.
It is the calling function’s responsibility to ensure no interrupts occur during this test.
If an error is detected then external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void CPU_Test_General_Low(void)
Description
Test registers R1, R2, R3, R4, R5, R6 and R7. These are the general purpose registers. Registers are tested
in pairs.
 For each pair of registers:
 1. Write h'55555555 to both.
 2. Read both and check they are equal.
 3. Write h'AAAAAAAA to both.
 4. Read both and check they are equal.

It is the calling function’s responsibility to disable exception during this test.
If an error is detected then external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 7 of 38

Syntax
void CPU_Test_General_High(void)
Description
Test registers R8, R9, R10, R11 and R12. These are the general purpose registers. Registers are tested in
pairs.
 For each pair of registers:
 1. Write h'55555555 to both.
 2. Read both and check they are equal.
 3. Write h'AAAAAAAA to both.
 4. Read both and check they are equal.

It is the calling function’s responsibility to disable exceptions during this test.
If an error is detected then external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void CPU_Test_Control(void)
Description
Tests control registers PSP, MSP, LR, APSR, BASEPRI, CONTROL.
This test assumes registers R1 to R4 are working.
 Generally the test procedure for each register is as follows:
 For each register:-
 1. Write h'55555555 to.
 2. Read back and check value equals h'55555555.
 3. Write h'AAAAAAAA to.
 4. Read back and check value equals h'AAAAAAAA.

Note that there are some cases where restrictions on specific bits within a register do not allow for following
this procedure. For these cases other test values have been chosen.
It is the calling functions responsibility to ensure that the processor is in Privileged Mode. If this function is
called in Unprivileged Mode the test will fail, as some of the register bits are not accessible in Unprivileged
Mode.
It is also the calling function’s responsibility to disable exceptions during this test.

Note: FAULTMASK and PRIMASK are not tested since this test requires exception disabled. Thus they are

not activated during the test modifying FAULTMASK and PRIMASK.

If an error is detected then external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 8 of 38

Syntax
void CPU_Test_PC (void)
Description
This function provides the Program Counter (PC) register test.
This provides a confidence check that the PC is working.
It tests that the PC is working by calling a function that is located in its own section so that it can be located
away from this function, so that when it is called more of the PC Register bits are required for it to work.
So that this function can be sure that the function has actually been executed it returns the inverse of the
supplied parameter. This return value is checked for correctness.
If an error is detected then external function CPU_Test_ErrorHandler will be called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

1.2 ROM
This section describes the ROM / Flash memory test using CRC routines. Reference IEC 60730: 1999+A1:2003 Annex
H – H2.19.4.1 CRC – Single Word.

A cyclic redundancy check (CRC) is a fault or error control technique that generates a single word or checksum to
represent the contents of memory. A CRC checksum is the remainder after a binary division, with a no bit carry (XOR
used instead of subtraction) of the message bit stream done by a predefined (short) bit stream of length n + 1,
representing the coefficients of a polynomial with degree n. Before the division, n zeros are appended to the message
stream. CRCs are popular because they are simple to implement in binary hardware and easy to analyze mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared with
the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

CRCs get complicated when you need to generate a CRC value to compare to CRC values produced by other CRC
generators. Factors may change the resulting CRC value, even when the basic CRC algorithm is the same. The
combination of the order data is supplied to the algorithm, the assumed bit order in any look-up table used, and the
required order of the bits of the actual CRC value — are all factors. These complications have arisen because big and
little endian systems were developed to work together and employ serial data transfers where bit order became
important. It produces the same result as the IAR for Arm® toolchain does using the checksum option. If you are using
the IAR for Arm toolchain to automatically insert a reference CRC into the ROM, the value can be compared directly
with the one calculated.

 CRC32C Algorithm
The Synergy S124 includes a CRC module that supports CRC-32C. This software configures the CRC module to
produce a 32-bit CRC-32C:

• Polynomial = 0x1EDC6F41 (x32 + x28 + x27 + x26 + x25 + x23 + x22 + x20 + x19 + x18 + x14 + x13 + x11 + x10
+ x9 + x8 + x6 + 1)

• Width = 32 bits
• Initial value = 0xFFFFFFFF
• XOR with h’FFFFFFFF is performed on the output CRC

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 9 of 38

 CRC Software API
All software is written in ANSI C. The file S124_registers.h includes definitions of S124 registers. The functions
listed calculate a CRC value and verify its correctness against a value stored in ROM.

Table 2 CRC Software API Source files

File name
crc.h, crc_verify.h
crc.c, CRC_Verify.c

These following functions are implemented in files CRC_Verify.h and CRC_Verify.c:

Syntax
bool CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)
Description
This function compares a new CRC value to a reference CRC and supplies an address where reference
CRC is stored.
Input Parameters
uint32_t ui32_NewCRCValue Value of calculated new CRC value.
uint32_t ui32_AddrRefCRC Address where 32 bit reference CRC value is stored.
Output Parameters
NONE N/A
Return Values
bool True = Passed, false = Failed

These following functions are implemented in files crc.h and crc.c:

Syntax
void CRC_Init(void)
Description
Initializes the CRC module. This function must be called before any of the other CRC functions can be.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A
Syntax
uint32_t CRC_Calculate(uint32_t* pui32_Data, uint32_t ui32_Length)
Description
This function calculates the CRC of a single specified memory area.
Input Parameters
uint32_t* pui32_Data Pointer to start of memory to be tested.
uint32_t ui32_Length Length of the data in long words.
Output Parameters
NONE N/A
Return Values
Uint32_t The 32-bit calculated CRC32C value.

The following functions are used when the memory area cannot simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This method can also be used if the function,
CRC_Calculate, takes too long in a single function call.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 10 of 38

void CRC_Start(void)
Description
Prepares the module for starting to receive data. Call this once prior to using function CRC_AddRange.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void CRC_AddRange(uint32_t* pui32_Data, uint32_t ui32_Length)
Description
Use this function (rather than CRC_Calculate) to calculate the CRC on data with more than one address
range. Call CRC_Start first, then CRC_AddRange, for each address range required, and then call
CRC_Result to get the CRC value.
Input Parameters
uint32_t* pui32_Data Pointer to start of memory range to be tested.
uint32_t ui32_Length Length of the data in long words.
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
uint32_t CRC_Result(void)
Description
Calculates the CRC value for all memory ranges added using function CRC_AddRange, since CRC_Start
was called.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
uint32_t The calculated CRC32C value.

1.3 RAM
March tests are a family of tests that are well recognized as an effective way to test RAM.

A March test consists of a finite sequence of March elements A March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general, the more March elements the algorithm has the better its fault coverage, but at the expense of a slower
execution time.

The algorithms are destructive (they do not preserve the current RAM values), but the supplied test functions provide a
non-destructive option, so the memory’s contents can be preserved. Preservation is achieved by copying the memory to
a supplied buffer — before running the actual algorithm — then restoring the memory from the buffer at the end of the
test. The API includes an option to automatically test the buffer, as well as the RAM test area.

The area of RAM undergoing testing cannot be used for anything else during the test. This issue makes testing RAM
used in the stack difficult. To alleviate this issue, the API has functions that can be used to test the stack.

The following section introduces specific March tests. Following that is the specification of the software APIs.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 11 of 38

 Algorithms
March C

The March C algorithm (van de Goor 1991) consists of six March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
• Any fault that affects the address decoder:
• With a certain address, no cell will be accessed.
• A certain cell is never accessed.
• With a certain address, multiple cells are accessed simultaneously.
• A certain cell can be accessed by multiple addresses.

These are the 6 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at lowest address, read ones, write zeros, increment up array bit by bit.
IV. Starting at highest address, read zeros, write ones, decrement down array bit by bit.
V. Starting at highest address, read ones, write zeros, decrement down array bit by bit.

VI. Read all zeros from array.

March X

Note: This algorithm has not been implemented for the Synergy and is only presented here for information as it relates
to the March X WOM version below.

The March X algorithm consists of four March elements with a total of six operations. It detects the following faults:

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the four March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
IV. Read all zeros from array.

March X (Word-Oriented Memory version)

The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm in two
stages. First the standard March X is converted from using a single bit data pattern to using a data pattern equal to the
memory access width. At this stage, the test is primarily detecting inter-word faults, including Address Decoder faults.
The second stage adds two additional March elements. The first element uses a data pattern of alternating high/low bits;
the second uses the inverse. These elements are added to detect intra-word coupling faults.

These are the six March elements:-

1. Write all zeros to an array
2. Starting at lowest address, read zeros, write ones, increment up array word by word.
3. Starting at highest address, read ones, write zeros, decrement down word by word.
4. Starting at lowest address, read zeros, write h’AAs, increment up array word by word.
5. Starting at highest address, read h’AAs, write h’55s, decrement down word by word.
6. Read all h’55s from the array.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 12 of 38

 Software API
Two implementations of the RAM tests are available;

1. Standard implementation.
2. Hardware (HW) implementation. This version uses the Data Operation Circuit (DOC) to help perform the tests.

Both implementations share the same core API, but the ‘HW’ implementation has some additional functions detailed in
applicable sections.

March C API

This test can be configured to use 8, 16 or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the following:

1. RAMTEST_MARCH_C_ACCESS_SIZE_8BIT
2. RAMTEST_MARCH_C_ACCESS_SIZE_16BIT
3. RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed up the test, as well
as reducing the stack and code size. It is done by limiting the size of the variable used to hold the number of ‘words’ that
the test area contains. The ‘word’ size is the selected access width.

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the following:

1. RAMTEST_MARCH_C_MAX_WORDS_8BIT (Max words in test area is 0xFF)
2. RAMTEST_MARCH_C_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
3. RAMTEST_MARCH_C_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 3 Source files

Standard HW
ramtest_march_c.h, ramtest_march_c.h, ramtest_march_HW.h
ramtest_march_c.c, ramtest_march_c_HW.c, ramtest_march_HW.c.

The source is written in ANSI C and uses S124_registers.h to access peripheral registers.

Note: The API allows just a single word to be tested with a function call. However, to test coupling faults between
words, it is important to use the functions to test a data range bigger than one word.

Declaration
bool RamTest_March_C(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);
Description
RAM memory test using March C (Goor 1991) algosithm.
Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must align with the
selected memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This address must align with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe

For a destructive memory test set to NULL.
For a non-destructive memory test, it is set to the start of a buffer that is large enough
to copy the contents of the test area into it and that is aligned with the selected
memory access width.

Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test or parameter check failed.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 13 of 38

Declaration

bool RamTest_March_C_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description
Non Destructive RAM memory test using March C (Goor 1991) algorithm.
This function differs from the RamTest_March_C function, it tests the ‘RAMSafe’ buffer before using it. If
the test of the ‘RAMSafe’ buffer fails, then the test is aborted and the function returns false.
Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must align with the
selected memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This address must align with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void*
p_RAMSafe

Set to the start of a buffer that is large enough to copy the contents of the test area
into it and that is aligned with the selected memory access width.

Output Parameters
NONE N/A
Return Values

bool True = Test passed. False = Test or parameter check failed.

March X WOM API

This test can be configured to use 8, 16 or 32-bit RAM accesses.

This test is achieved by #defining RAMTEST_MARCH_X_WOM_ACCESS_SIZE in the header file to be one of the
following:

1. RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_8BIT
2. RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_16BIT
3. RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_32BIT

To speed up the test run time, you can choose to limit the maximum size of RAM that can be tested with a single
function call. This is done by limiting the size of the variable used to hold the number of ‘words’ that the test area
contains. The ‘word’ size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_ X_WOM_MAX_WORDS in the header file to be one of the
following:

1. RAMTEST_MARCH_ X_WOM_MAX_WORDS_8BIT (Max words in test area is 0xFF)
2. RAMTEST_MARCH_ X_WOM_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
3. RAMTEST_MARCH_ X_WOM_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 4 Source files

Standard HW
ramtest_march_x_wom.h ramtest_march_HW.h, ramtest_march_x_wom.h
ramtest_march_x_wom.c ramtest_march_HW.c, ramtest_march_x_wom_HW.c

The source is written in ANSI C and uses S124_registers.h to access peripheral registers.

Note: The API allows just a single word to be tested with a function call. However, to test coupling faults between
words, it is important to use the functions to test a data range bigger than one word.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 14 of 38

Declaration

bool RamTest_March_X_WOM(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters
uint32_t
ui32_StartAddr

Address of the first word of RAM to be tested. This address must align with the
selected memory access width.

uint32_t
ui32_EndAddr

Address of the last word of RAM to be tested. This address must align with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe

For a destructive memory test set to NULL.
For a non-destructive memory test, set to the start of a buffer that is large enough to
copy the contents of the test area into it and that is aligned with the selected memory
access width.

Output Parameters
NONE N/A
Return Values

bool True = Test passed. False = Test or parameter check failed.

Declaration

bool RamTest_March_X_WOM_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description
Non Destructive RAM memory test based on March X algorithm converted for WOM. This function differs
from the RamTest_March_X_WOM function, it tests the ‘RAMSafe’ buffer before using it. If the test of the
‘RAMSafe’ buffer fails, then the test is aborted and the function returns false.
Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must align with the
selected memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This address must align with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe Set to the start of a buffer that is large enough to copy the contents of the test area
into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

March C and March X WOM HW Implementation specific API.

The ‘HW’ implementations of the March C and the March X WOM tests use the Data Operation Circuit (DOC) to help
perform the tests. The DOC is used to compare values read back from RAM with expected values.

It is the user’s responsibility to ensure that nothing else accesses the DOC during the RAM tests.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 15 of 38

Declaration
void RamTest_March_HW_Init(void);
Description
Initializes the hardware (DOC) used by the ‘HW’ implementations of the RAM tests.
Call this function before using any other RAM Test function that uses a HW implementation.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
void N/A

Declaration
bool RamTest_March_HW_PreTest(void);
Description
Checks whether the hardware (DOC) are functioning correctly before using.
A quick functional test of the DOC is performed.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test failed.

Declaration
bool RamTest_March_HW_Is_Init(void);
Description
Checks if RamTest_March_HW_Init has been called. Used by specific RAM tests to check that the
hardware has been initialized before trying to use it. A user does not have to use this function.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test or parameter check failed.

RAM Test Stack API

This API enables a RAM test on an area of RAM that includes the stack. The function that performs the RAM test requires
a stack, so these functions re-locate the stack to a supplied new RAM area, allowing the original stack area to be tested.
Three functions can be called, depending on which stack (Main or Process) is in the test area, or if both are.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is called in
unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged mode.

Note: The stack testing functions use one of the March RAM tests presented previously, passing it in as a function
pointer. If using a test that requires initialization before use, it is the user’s responsibility to ensure this
initialization has been done before trying to use the test—by calling one of these functions.

Table 5 Source files

File name
ramtest_stack.h
ramtest_stack.c
StartBothTestAssembly.asm, StartMainTestAssembly.asm, StartProcTestAssembly.asm

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 16 of 38

Declaration
bool RamTest_Stack_Main(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewMSP,
 TEST_FUNC fpTest_Func);
Description
RAM test of an area that includes the Main Stack. (but not the Process stack)
Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

uint32_t ui32_EndAddr The address of the last word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

void* p_RAMSafe Set to the start of a buffer that is the same size as the test RAM area. This
address must be compatible with the requirements of the fpTest_Func.

uint32_t ui32_NewUSP New Stack pointer value for the Main stack to be relocated.

TEST_FUNC fpTest_Func
Function pointer of type TEST_FUNC to the actual memory test to be used.
Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);
For example ‘RamTest_March_X_WOM’.

Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test or parameter check failed.

Declaration
bool RamTest_Stack_Proc(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewPSP,
 TEST_FUNC fpTest_Func);
Description
RAM test of an area that includes the Process Stack. (but not the Main stack)
Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

uint32_t ui32_EndAddr The address of the last word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

void* p_RAMSafe Set to the start of a buffer that is the same size as the test RAM area. This
setting must be compatible with the requirements of the fpTest_Func.

uint32_t ui32_NewPSP New Stack pointer value for the Process stack to be relocated to.

fpTest_Func
Function pointer of type TEST_FUNC to the actual memory test to be used.
Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);
For example ‘RamTest_March_X_WOM’.

Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test or parameter check failed.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 17 of 38

Declaration
bool RamTest_Stacks(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewPSP,
 uint32_t ui32_NewMSP,
 TEST_FUNC fpTest_Func);
Description
RAM test of an area that includes both the Stacks (that is, Main and Process stacks).

Input Parameters
uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

uint32_t ui32_EndAddr
The address of the last word of RAM to be tested. This address must be
compatible with the requirements of the fpTest_Func.

void* p_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This
setting must be compatible with the requirements of the fpTest_Func.

uint32_t ui32_NewPSP New Stack pointer value for the Process stack to be relocated to.
uint32_t ui32_NewMSP New Stack pointer value for the Main stack to be relocated to.

TEST_FUNC fpTest_Func
Function pointer of type TEST_FUNC to the actual memory test to be used.
Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void* const);
For example ‘RamTest_March_X_WOM’.

Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test or parameter check failed.

1.4 Clock
The Renesas Synergy S124 MCU has a Clock Frequency Accuracy Measurement Circuit (CAC) used to monitor the
Main clock frequency during run time.

Either one of the MAIN, SUB_CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB clocks, or an External clock
on the CACREF pin, can be used as a reference clock source.

If using an external reference clock:

1. #define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in file clock_monitor.h.
2. Be sure to provide target and reference clocks frequency in Hz.

If using one of the internal source clocks:

1. Be sure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.
2. Be sure to select the reference clock (through ref_clock input parameter).
3. Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range two types of interrupt can be
generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of
interrupt and handle them. See Section 2.4 for an example of interrupt activation. The allowable frequency range can be
adjusted using:

/*Percentage tolerance of main clock allowed before an error is reported.*/

#define CLOCK_TOLERANCE_PERCENT 10

In addition to the CAC function the Synergy S124 has an Oscillation Stop Detection Circuit. If the main clock stops, the
Middle-Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The User
of this module must handle the NMI interrupt and check the NMISR.OSTST bit.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 18 of 38

Table 6 Clock Source files

File name
clock_monitor.h
clock_monitor.c

Software relies on S124_registers.h to access peripheral registers.

There are two versions of the ClockMonitor_Init function:

1. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

Syntax
void ClockMonitor_Init(clock_source_t target_clock, clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack);
Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC
module and the reference clock selected through ref_clock input parameter.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.
Input Parameters

clock_source_t target_clock The target clock to be monitored (one of the following: Main,
Sub, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB).

clock_source_t ref_clock
The reference clock used by CAC to monitor the target clock
(one of the following: Main, Sub, HOCO, MOCO, LOCO,
IWDTCLK, and PCLKB).

uint32_t target_clock_frequency The target clock frequency in Hz
uint32_t ref_clock_frequency The reference clock frequency in Hz.
CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

Function called if the main clock deviates from the allowable
range.

Output Parameters
NONE N/A
Return Values
NONE N/A

2. ClockMonitor_Init function, if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is defined.

Syntax
void ClockMonitor_Init(clock_source_t target_clock,
uint32_t MainClockFrequency,
 uint32_t ExternalRefClockFrequency,
 CLOCK_MONITOR_CACREF_PIN ePin,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack);
Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC
module and the CACREF pin as a reference clock. SW can select two possible pins:
eCLOCK_MONITOR_CACREF_A (pin P204) and eCLOCK_MONITOR_CACREF_B (pin P400),
and it is the user’s responsibility to select the pin based on the board set-up.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 19 of 38

Input Parameters

clock_source_t target_clock
The target clock to be monitored. The clock shall be one among Main
clock, Sub clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK
clock and PCLKB clock.

uint32_t MainClockFrequency Main clock expected frequency in Hz.
uint32_t
ExternalRefClockFrequency External reference clock frequency in Hz.

CLOCK_MONITOR_CACREF_PIN ePin The pin to use for CACREF.
CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

Function to be called if the main clock deviates from the allowable
range or if this function fails.

Output Parameters
NONE N/A
Return Values
NONE N/A

1.5 Independent Watchdog Timer
A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the watchdog
will not be refreshed by software as required and will detect an error.

The Independent Watchdog Timer (iWDT) module of the Synergy S124 is used to detect abnormal execution. It includes
a windowing feature so that the refresh must happen within a specified ‘window’ rather than just before a specified time.
It can be configured to generate an internal reset or a NMI interrupt if an error is detected. Configuring the iWDT can be
done through the OFS0 register whose settings are controlled by the user (see Section 2.5). A function to be used after a
reset is provided to decide whether the IWDT has caused the reset. The test module relies on the S124_registers.h
file to access to peripheral registers.

Table 7 Independent Watchdog Timer Source files

File name
iwdt.h
iwdt.c

Syntax
void IWDT_Init (void)
Description
Initialize the iWDT. After calling, the IWDT_kick function is called at the correct time to prevent a watchdog
timer error.
Note: If configured to produce an interrupt, it will be the Non Maskable Interrupt (NMI). This NMI must be

handled by user code to check the NMISR.IWDTST flag.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
None N/A

Syntax
void IWDT_Kick(void)
Description
Refresh the watchdog timer count.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 20 of 38

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
bool IWDT_DidReset(void)
Description
Returns true if the iWDT has timed out or not been refreshed correctly. Can be called after a reset to
decide if the watchdog timer caused the reset.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool True if watchdog timer has timed out, otherwise false.

1.6 Voltage
The Synergy S124 MCU has a Voltage Detection Circuit that can be used to detect when the power supply voltage
(VCC) falls below a specified voltage. The sample code demonstrates using the Voltage Detection Circuit 1 to generate
a NMI interrupt when VCC drops below a specified level. The hardware can also generate a reset, but this behavior is
not supported in the sample code. This module relies on S124_registers.h file to access peripheral registers.

Table 8 Voltage Source files

File name
voltage.h
voltage.c

Syntax
void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage)
Description
Initialize and start voltage monitoring. An NMI is generated if the VCC falls below the specified voltage.
Note: The NMI must be handled by user code, which must check the NMISR.LVDST flag.

The voltage threshold eVoltage is set to a value lower than the nominal VCC one.
Input Parameters

VOLTAGE_MONITOR_LEVEL eVoltage
The specified low voltage level. For details, see declaration of
enumerated type VOLTAGE_MONITOR_LEVEL in
voltage.h.

Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 21 of 38

1.7 ADC14
The ADC14 has a diagnostic mode used to test the ADC. The diagnostic mode can be configured so a test is performed
every time the ADC is used normally for a conversion. The diagnostic reference voltage and the expected result are
automatically rotated between zero, half scale, and full scale. The diagnostic software provides two automatic
conversions (zero and full scale). The module relies on S124_registers.h file to access peripheral registers.

Table 9 ADC14 Source files

File name
test_ADC14.h
test_ADC14.c

Syntax
void Test_ADC14_Init (void)
Description
Initialize the ADC14 module. This must be called before using any other ADC functions.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
bool Test_ADC14_Wait (void)
Description
This function waits while two ADC conversions are made by ADC14 module. This test does not preserve
ADC configuration and is therefore suitable as a power on test rather than as a run-time periodic test.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = test failed.

Syntax
void Test_ADC14_Start(ADC14_ERROR_CALL_BACK Callback)
Description
Set up the ADC module so diagnostic tests are performed each time the ADC is used. The diagnostic
reference voltage is automatically rotated (Zero, half VREF, and VREH).
User code must call the Test_ADC14_CheckResult function, either periodically or by following each ADC
completion to check the diagnostic result.
Input Parameters

ADC14_ERROR_CALL_BACK Callback
Function to call if an error is detected.
Note: This function is only called if the Test_ADC14_CheckResult is
called, with parameter bCallErrorHandler set to true.

Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 22 of 38

Syntax
bool Test_ADC14_CheckResult(bool bCallErrorHandler)
Description
Check that ADC diagnostic result is as expected.
This must be called after Test_ADC14_Start and then be called periodically or whenever an ADC
conversion completes.
Note: The actual result is allowed to be with a certain tolerance of the expected result. See

ADC14_TOLERANCE in test_ad12.c for details.
Input Parameters

bool bCallErrorHandler Set true to call the error callback function supplied to Test_ADC14_Start
function; otherwise, it is false.

Output Parameters
NONE N/A
Return Values
bool True = Test passed. False = Test failed.

1.8 Temperature
Synergy S124 has a Temperature Sensor module to monitor MCU temperature. The ADC14 module is also required
with the Temperature Sensor. The module relies on the S124_registers.h file to access peripheral registers.

Table 10 Temperature Source files

File name
temperature.h
temperature.c

Syntax
void Temperature_Init(uint16_t Temperature_ADC_Value_Min,
 uint16_t Temperature_ADC_Value_Max,
 TEMPERATURE_ERROR_CALL_BACK Error_callback)
Description
Initialize the Temperature Sensor and enable the ADC14 module. Specify an allowed temperature range in
terms of ADC14 output values. After calling this function, the Temperature_Start function is called
periodically to perform an ADC conversion on the Temperature Sensor output, then the remaining functions
are used to check the result.
Input Parameters
uint16_t
Temperature_ADC_Value_Min

Specifies the minimum value the ADC14 should output when reading
the temperature sensor.

uint16_t
Temperature_ADC_Value_Max

Specifies the maximum value the ADC14 should output when reading
the temperature sensor.

TEMPERATURE_ERROR_CALL_BACK
Error_callback

This function is called by function Temperature_CheckResult if the
temperature (ADC14 Value) is outside the specified allowable range.

Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 23 of 38

Syntax
void Temperature_Start(void);
Description
Start an ADC conversion to read the temperature. Uses the ADC14 module, destroying its current settings.
It is the user’s responsibility to ensure this behavior is not a problem.
Following this function, use the Temperature_Read_Wait or Temperature_CheckResult function.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void Temperature_Wait_Finish (void);
Description
This function blocks until a temperature conversion, started by Temperature_Start, has completed.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A
Syntax
uint16_t Temperature_Read_Wait (void);
Description
This function blocks until a temperature conversion, started by Temperature_Start, has completed and then
returns the ADC14 value.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
uint16_t ADC14 output value

bool Temperature_CheckResult(bool bCallErrorHandler)
Description
This function blocks until a temperature conversion, started by Temperature_Start, has completed and then
checks if the ADC14 value is within the range specified in Temperatire_Init.
Input Parameters

bCallErrorHandler Set true to get the callback registered in Temperature_Init called if the
temperature falls outside the specified limits; otherwise, set false.

Output Parameters
NONE N/A
Return Values
bool True: Result falls within specified limits. False: Result falls outside specified limits.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 24 of 38

1.9 Port Output Enable (POE)
The Port Output Enable for the GPT (POEG) module can be used to place General PWM Timer (GPT) output pins in the
output disable state in one of the following ways: input level detection of the GTETRG pins; Output-disable request from
the GPT; Comparator interrupt request detection; Oscillation stop detection of the clock generation circuit; Register
settings.

This software demonstrates the setting of certain pins into the high impedance state when a rising edge on GTETRGn (n
= A, B) input pin is detected or when oscillation stop is detected. Note that the user must configure the GTETRGn pin
within POE_init function as well as enable handling interrupts generated by the POE. See Section 2.9 for more details
about enabling the handling of POE interrupt. The software module relies on S124_registers.h header file to access
peripheral registers.

Table 11 Port Output Enable Source files

File name
POE.h, GPT.h
POE.c, GPT.c

Syntax
void POE_Init(POE_CALL_BACK Callback, POE_group_t group);
Description
This software configures the POE:

1. To put the GTIOCA and GTIOCB pins of all GPT channels in the high impedance state if a rising
edge on the GTETRGn (n = A, B) input pin is detected. In particular the SW configures pin P100 to
be used as GTETRGA pin. An interrupt is also generated.

Note that user shall ensure the configuration of GTETRGA pin which strictly depends on the board where
the microcontroller is placed.

2. To put the GTIOCA and GTIOCB pins of all GPT channels in the high impedance state if Oscillation
Stop is detected.

Input Parameters
POE_CALL_BACK Callback Function to call if a rising edge on the GTETRGn input pin is detected.
POE_group_t group The POEG group to be set by the initialization function.
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax
void POE_ClearFlags_ga(void);
Description
For POEG group A, this function clears the Port Input Detection Flag, the Detection Flag for GPT or
ACMPHS Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.
This will release the pins from the high impedance state.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 25 of 38

Syntax
void POE_ClearFlags_gb(void);
Description
For POEG group B, this function clears the Port Input Detection Flag, the Detection Flag for GPT or
ACMPHS Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.
This will release the pins from the high impedance state.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

void GPT_Init(POE_group_t group);

Description
This function configures the GPT in order to associate GTIOCA and GTIOCB pins of each GPT channel to
the POE group stated by input parameter ‘group’.
Input Parameters

POE_group_t group POE group to associate the GTP channels.

Output Parameters

NONE N/A

Return Values

NONE N/A

2. Example Usage
This section provides some useful suggestions about how to apply the released software.

The testing can be split into two parts:

1. Power-Up Tests. These are tests run once following a reset. They should be run as soon as possible, but especially
if start-up time is important. It may be permissible to run some initialization code before running all the tests so, for
example, a faster main clock can be selected.

2. Periodic Tests. These are tests that are run regularly throughout normal program operation. This user guide does not
determine how often a particular test should be run. How often periodic tests are scheduled is up to the user and
depends on how their application is structured.

The following sections provide an example of how each test type should be used.

2.1 CPU
If a fault is detected by any of the CPU tests, then a user supplied function called CPU_Test_ErrorHandler is called.
Since any error in the CPU is very serious, the aim of this function should be to get to a safe state as soon as possible,
where software execution is not relied on.

 Power-Up
All the CPU tests should be run as soon as possible following a reset.

Note: The function must be called before the device is put in Unprivileged mode. The function CPU_Test_All can
be used to automatically run all the CPU tests.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 26 of 38

 Periodic
To test the CPU periodically, the function CPU_Test_All can be used—as it is for the power-up tests—to automatically
run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call, the user can choose to call
each individual CPU test function in turn each time the CPU periodic test is scheduled.

2.2 ROM
The ROM is tested by calculating a CRC value (CRC32C) of its contents and comparing with a reference CRC value that
must be added to a specific location in the ROM that is not included in the CRC calculation.

The IAR for Arm Toolchain can be used to calculate and add a CRC value to the built file at a location specified by the
user. This process can be done via a dialog in IAR. See Figure 1 Adding Reference CRC.

The CRC module must be initialized before its use with a call to the CRC_Init function.

Ensure that all ROM sections used are included in the CRC calculation the IAR and the CRC Test code both use, so that
the results match.

Figure 1 Adding Reference CRC

 Power-Up
All the ROM memory used must be tested at power-up.

If the ROM area is one contiguous block, then the CRC_Calculate function can be used to calculate and return a
calculated CRC value.

If the ROM used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.
2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.
3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can be compared with the reference CRC value stored in the ROM using the CRC_Verify
function.

It is a user’s responsibility to ensure all ROM areas used by their project are included in the CRC calculations.

 Periodic
It is suggested the periodic testing of ROM be done using the CRC_AddRange method, even if the ROM is contiguous,
as this method allows the CRC value to be calculated in sections, so that no single function call takes too long. Follow
the procedure specified for power-up tests. Ensure that each address range is the smallest possible, so a call to
CRC_AddRange does not take too long.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 27 of 38

2.3 RAM
Note: RAM are to be tested may change dramatically, depending on your project’s memory map.

If using ‘HW’ versions of RAM Tests (where DOC is used), then call the RamTest_March_HW_Init function prior to
running the test. The following #define in file ramtest_march_HW.h makes this selection:

#define USE_HW_VERSION_OF_RAM_TESTS

When testing RAM, it is important to remember the following:

1. RAM being tested cannot be used for anything else including the current stack.
2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and restored from.
3. Any test of the stack requires a RAM buffer where the stack can be relocated.
4. There are two stacks, Main and Process. It is the current stack that must be relocated before being used.
5. To relocate the stack the device must be in supervisor mode. The device automatically enters default mode when

handling an interrupt.

 Power-Up
At power-up a full destructive test can be performed on the RAM other than the Stack. The Stack must be tested with a
non-destructive test. If startup time is very important, it might be possible to fine-tune this time, so only the area of
Stack used before the power-up RAM test is performed by using the slower non-destructive test, with the rest of the
Stack tested with a destructive test.

 Periodic
All periodic tests must be non-destructive.

It is assumed that the periodic tests are called from an interrupt handler and therefore the device is in privileged mode.

2.4 Clock
Main clock monitoring is set-up with a single function call to ClockMonitor_Init. There are two versions of this file,
depending on the choice between using an external or internal reference clock, as decided by the following #define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:

#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

#define MAIN_CLOCK_FREQUENCY_HZ (16000000) // 16 MHz
#define EXTERNAL_REF_CLOCK_FREQUENCY_HZ (15000) // 15kHz

 ClockMonitor_Init(MAIN,
MAIN_CLOCK_FREQUENCY_HZ,EXTERNAL_REF_CLOCK_FREQUENCY_HZ,eCLOCK_MONITOR_CACREF_A,CAC_Er
ror_Detected_Loop);

#else

#define TARGET_CLOCK_FREQUENCY_HZ (16000000) // 16 MHz
#define REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15kHz

 ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,
REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);

/*NOTE: The IWDTCLK clock must be enabled before starting the clock monitoring.*/

#endif

This define can be called as soon as the main clock has been configured and the iWDT has been enabled (see section 1.5).

Clock monitoring is performed by hardware, so nothing needs to be done by software during the periodic tests.

To enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Arm Cortex-M0+ Nested Vectored
Interrupt Controller (NVIC) should be configured to handle it.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 28 of 38

To configure the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number
correspondent to the CAC frequency error interrupt (CAC_FERRI = 0x34) and CAC overflow (CAC_OVFI = 0x36). In
particular, it is necessary to configure one IELSR register so that it is linked to CAC events mentioned previously:

IELSRn.IELS = 0x34; // (CAC_FERRI)

IELSRn.IELS = 0x36; // (CAC_OVFI)

In addition, to enable the Cortex-M0+ NVIC to handle the CAC interrupts, the following instructions are set:

NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

Where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number that are defined by
the user1.

If oscillation stop is detected, an NMI interrupt is generated. The user code must handle the NMI interrupt and check
the NMISR.OSTST flag as shown in this example:

if(1 == R_ICU->NMISR_b.OSTST)
{
 Clock_Stop_Detection();

 /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
 R_ICU->NMICLR_b.OSTCLR = 1;
}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

2.5 Independent Watchdog Timer
To configure the iWDT, it is necessary to coherently set the OFS0 register. The following code sets the value stored at
the OFS0 memory allocation (OFS0 address = 0x00000400).

/* IWDT Start Mode Select */
#define IWDTSTRT_ENABLED (0x00000000)
#define IWDTSTRT_DISABLED (0x00000001)

/*Time-Out Period selection*/
#define IWDT_TOP_128 (0x00000000)
#define IWDT_TOP_512 (0x00000001)
#define IWDT_TOP_1024 (0x00000002)
#define IWDT_TOP_2048 (0x00000003)

/*Clock selection. (IWDTCLK/x) */
#define IWDT_CKS_DIV_1 (0x00000000) // 0b0000
#define IWDT_CKS_DIV_16 (0x00000002) // 0b0010
#define IWDT_CKS_DIV_32 (0x00000003) // 0b0011
#define IWDT_CKS_DIV_64 (0x00000004) // 0b0100
#define IWDT_CKS_DIV_128 (0x0000000F) // 0b1111
#define IWDT_CKS_DIV_256 (0x00000005) // 0b0101

/*Window start Position*/
#define IWDT_WINDOW_START_25 (0x00000000)
#define IWDT_WINDOW_START_50 (0x00000001)
#define IWDT_WINDOW_START_75 (0x00000002)
#define IWDT_WINDOW_START_NO_START (0x00000003) /*100%*/
/*Window end Position*/
#define IWDT_WINDOW_END_75 (0x00000000)
#define IWDT_WINDOW_END_50 (0x00000001)
#define IWDT_WINDOW_END_25 (0x00000002)

1 For details on IRQ numbers, see Table 2-11 of “Cortex-M0+ Devices: Generic User Guide”, second release, 18
December 2012.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 29 of 38

#define IWDT_WINDOW_END_NO_END (0x00000003) /*0%*/

/*Action when underflow or refresh error */
#define IWDT_ACTION_NMI (0x00000000)
#define IWDT_ACTION_RESET (0x00000001)

/*IWDT Stop Control*/
#define IWDTSTPCTL_COUNTING_CONTINUE (0x00000000)
#define IWDTSTPCTL_COUNTING_STOP (0x00000001)

#define BIT0_RESERVED (0x00000001)
#define BIT13_RESERVED (BIT0_RESERVED << 13)
#define BIT15_RESERVED (BIT0_RESERVED << 15)

#define OFS0_IWDT_RESET_MASK (0xFFFF0000)

/*This define is used to configure the iWDT peripheral*/
#define OFS0_IWDT_CFG (BIT15_RESERVED | BIT13_RESERVED | BIT0_RESERVED | (IWDTSTRT_ENABLED << 1)
| (IWDT_TOP_1024 << 2) | (IWDT_CKS_DIV_1 << 4) | (IWDT_WINDOW_END_NO_END << 8) |
(IWDT_WINDOW_START_NO_START << 10) | (IWDT_ACTION_RESET << 12) | (IWDTSTPCTL_COUNTING_CONTINUE <<
14))

The OFS0_IWDT__CFG value is stored at the OFS0 address at compile time to configure the iWDT. In particular, the
example enables the iWDT to set a time-out period of 1024 clock cycles at IWDTCLK/1 clock frequency, counting also
during sleep mode of the microcontroller. The example does not set any start/end of watchdog window and configures a
reset in case there is a watchdog expiration.

The iWDT should be initialized as soon as possible following a reset with a call to IWDT_Init:

/*Setup the Independent WDT.*/
IWDT_Init();

Afterwards, the watchdog timer must be refreshed regularly to prevent WDT timeouts and initiating a reset. Note, if
using windowing, the refresh must not just be sufficiently regular, but also timed to match the specified window. A
watchdog refresh is called by calling the following:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the WDT has been configured to generate an NMI on error detection, then the user must handle the resulting
interrupt.

If the WDT has been configured to initiate a reset on error detection, then after a reset, the code should check whether
the IWDT caused the reset by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())
{
 /*todo: Handle a watchdog reset.*/
 while(1){
 /*DO NOTHING*/
 }
}

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 30 of 38

2.6 Voltage
The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the
VoltageMonitor_Init function. This call should be set up as soon as possible following a power-on reset.

Note: Set voltage threshold eVoltage lower than the Vcc nominal value.

The following example sets up the voltage monitor to generate an NMI if the voltage drops below 3.10 V.

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_3_10);

If a low voltage condition is detected, an NMI interrupt generates that the user must handle:

 /*Low Voltage LVD1*/
 if(1 == R_ICU->NMISR_b.LVD1ST)
 {
 Voltage_Test_Failure();

 /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/
 R_ICU->NMICLR_b.LVD1CLR = 1;
 }

2.7 ADC14
The ADC14 module has a built in diagnostic mode that allows various reference voltages to be tested.

To account for allowed inaccuracies, the expected result is allowed to fall within a tolerance defined using

 #define ADC14_TOLERANCE 8

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this tolerance could
be tightened.

The ADC14 Test module must be initialized with a call to Test_ADC14_Init.

 Power-Up
At power up the ADC14 module can be tested using the Test_ADC14_Wait function. This function waits until two AD
conversions are performed, one using reference voltage of VREF, and the other 0 V. The return value of this function
must be checked for the result.

 Periodic
The periodic testing should start with a single call to Test_ADC14_Start. Following that the ADC14 module will
perform a reference conversion each time it is used. The reference voltage is rotated between 0 V, VREF/2 and VREF.
The result of these reference conversions must be checked periodically using a call to Test_ADC14_CheckResult.

2.8 Temperature
When testing the MCU temperature the ADC14 module is used. If the user’s code also has the ADC14 monitoring
analog pins, it is important to carefully consider resource-sharing the ADC14 module.

The temperature sensor must be initialized before it is used with a call to Temperature_Init. This function must be
passed using the allowable range of temperatures expressed in terms of the ADC14 output. For details, see the Synergy
S124 MCU Hardware Manual.

/*Temperature Sensor*/
Temperature_Init(TEMPERATURE_ADC_MIN,
 TEMPERATURE_ADC_MAX,
 Temperature_Test_Failure);

 Power-Up
The temperature test procedure at power-up is the same as the procedure used for periodic tests.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 31 of 38

 Periodic
Periodically, the use of the ADC14 module must be driven by the temperature sensor. To make a temperature reading,
the user calls this function:

/*Start ADC reading temperature sensor output.*/
Temperature_Start();

The result can be checked against the allowable range supplied in the Temperature_Init function with a call to:

/*The registered Error callback will be called if there is an error. */
Temperature_CheckResult(TRUE);

To avoid the periodic test from blocking the software application too long, it can be arranged that each time the periodic
test is scheduled; it checks the temperature test result started on the prior scheduled test, then starts a new conversion.

The user’s code can use functions Temperature_Is_Finished or Temperature_Wait_Finish to determine when
the application can resume using the ADC14 to read analog pins.

2.9 POE
The POE initialization and start-up can be made using the following call:

POE_Init(POE_Event_Detected, GROUP_A);

The POEG group choice is up to the user. The user must carefully study the description of POE_Init and consult the
Synergy S124 Hardware Manual to determine if the POE sample configuration meets user’s system requirements.
Depending on the pins used in the user’s system, the POE.c file may need to be adapted for the desired behavior.

To enable interrupt generation by the POE, both the Interrupt Controller Unit (ICU) and Cortex-M0+ Nested Vectored
Interrupt Controller (NVIC) must be configured to handle it.

To configure the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number
corresponding to the POE group events (POEG_GROUP0 = 0x40, POEG_GROUP1 = 0x41). In particular, it is necessary
to configure one IELSR register so that it is linked to the aforementioned CAC events:

IELSRn.IELS = 0x40; // (POEG_GROUP0)

IELSRn.IELS = 0x41; // (POEG_GROUP1)

In addition, to enable the Arm Cortex-M0+ NVIC to handle the CAC interrupts, the following instructions must be set:

NVIC_EnableIRQ(POEG0_EVENT_IRQn);

NVIC_EnableIRQ(POEG1_EVENT_IRQn);

Where POEG0_EVENT_IRQn, POEG1_EVENT_IRQn are the IRQ numbers that must be defined by the user2.

3. Benchmarking
3.1 Environment
Development board DK-S124M v3.0
Clock EXTAL = 16 MHz, HOCO = 64 MHz, ICLK = 32 MHz, PCLKB = 32 MHz,

PCLKD = 64 MHz
MCU R7FS1247H2A01CBD
Tool chain IAR Embedded Workbench for Arm , Functional Safety, v.7.40.6.9816
In-circuit debugger Arm Debug + ETM connector and SEGGER J-link® on board

2 For details on IRQ numbers, see Table 2-11 of “Cortex-M0+ Devices: Generic User Guide,” second release, 18
December 2012.

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 32 of 38

Build option:

General option Target = Renesas R7FS1247H
Complier Settings Language = C

C-dialect = C-99
Language Conformance = Standard with IAR extension
Plain ‘char’ is: Unsigned
Floating-point semantics: Strict conformance

Optimization Level None

3.2 Results
 CPU

Table 12 CPU test results

Measurement Result
Non-CouplingTest

Result
Coulping Test

ROM usage (bytes) 2454 2518
RAM usage (bytes) 0 0
Stack usage (bytes) 24 24
Clock Cycle Count – CPU_TestAll 397 1311
Time Measured (µs) @32 MHz – CPU_TestAll 12.40 40,96

 ROM

Table 13 Test results for CRC32C

Measurement Result
ROM usage (bytes) 172
RAM usage (bytes) 0
Stack usage (bytes) 20
Clock Cycle Count – CRC_Init 82
Time Measured (µs) @32 MHz – CRC_Init 2.56
Clock Cycle Count – CRC_Calculate (ROM overall, that is, 128 kB) 426073
Time Measured (ms) @32 MHz – CRC_Calculate (128 kB) 13.314
Clock Cycle Count – CRC_Calculate (1 kB) 3417
Time Measured (µs) @32 MHz – CRC_Calculate (1 kB) 106.78
Clock Cycle Count – CRC_Calculate (4 kB) 13401
Time Measured (µs) @32 MHz – CRC_Calculate (4 kB) 418.78
Clock Cycle Count – CRC_Calculate (16 kB) 53337
Time Measured (ms) @32 MHz – CRC_Calculate (16 kB) 1,67
Clock Cycle Count – CRC_Verify 57
Time Measured (us) @32 MHz – CRC_Verify 1.78

 RAM
The tests were executed in 8 and 32-bit access width configurations. The 32-bit word limit was always used; it was
found that using a smaller limit did not improve performance.

March C
Table 14 March C test results (8-bit access, 32-bit word limit)

Measurement Normal Result HW (DOC) Result
ROM usage (bytes) 562 550
RAM usage (bytes) 0 0
Stack usage (bytes) 96 92
Stack usage Extra (bytes) 128 124

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 33 of 38

Measurement Normal Result HW (DOC) Result

Clock cycle
count

Destructive
1024 bytes 1939833 1928661
500 bytes 947374 941966
100 bytes 189742 188734

Non-destructive
1024 bytes 1958304 1947132
500 bytes 956413 951005
100 bytes 191581 190573

Extra
1024 bytes 3898249 3875905
500 bytes 1903896 1893080
100 bytes 381400 379384

Time Measured
(ms) @ 32 MHz

Destructive
1024 bytes 60,61978 60,27066
500 bytes 29,60544 29,43644
100 bytes 5,929438 5,897938

Non-destructive
1024 bytes 61,197 60,84788
500 bytes 29,88791 29,71891
100 bytes 5,986906 5,955406

Extra
1024 bytes 121,8203 121,122
500 bytes 59,49675 59,15875
100 bytes 11,91875 11,85575

Table 15 March C test results (32-bit access, 32-bit word limit)

Measurement Normal Result HW (DOC) Result
ROM usage (bytes) 600 622
RAM usage (bytes) 0 0
Stack usage (bytes) 88 88
Stack usage Extra (bytes) 120 120

Clock cycle
count

Destructive
1024 bytes 1040683 1171585
500 bytes 508299 572260
100 bytes 101899 114760

Non-destructive
1024 bytes 1047386 1178288
500 bytes 511596 575557
100 bytes 102596 115457

Extra
1024 bytes 2088090 2349894
500 bytes 1019916 1147838
100 bytes 204516 230238

Time Measured
(ms) @ 32 MHz

Destructive
1024 bytes 32,52134 36,61203
500 bytes 15,88434 17,88313
100 bytes 3,184344 3,58625

Non-destructive
1024 bytes 32,73081 36,8215
500 bytes 15,98738 17,98616
100 bytes 3,206125 3,608031

Extra 1024 bytes 65,25281 73,43419
500 bytes 31,87238 35,86994
100 bytes 6,391125 7,194938

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 34 of 38

March X WOM
Table 16 March X WOM test results (8-bit access, 32-bit word limit).

Measurement Normal Result HW (DOC) Result
ROM usage (bytes) 428 434
RAM usage (bytes) 0 0
Stack usage (bytes) 0 0
Stack usage Extra (bytes) 0 0

Clock cycle
count

Destructive
1024 bytes 96613 89505
500 bytes 47354 43914
100 bytes 9722 9082

Non-destructive
1024 bytes 115084 107976
500 bytes 56393 52953
100 bytes 11561 10921

Extra
1024 bytes 211809 197593
500 bytes 103856 96976
100 bytes 21360 20080

Time Measured
(ms) @ 32 MHz

Destructive
1024 bytes 3,019156 2,797031
500 bytes 1,479813 1,372313
100 bytes 0,303813 0,283813

Non-destructive
1024 bytes 3,596375 3,37425
500 bytes 1,762281 1,654781
100 bytes 0,361281 0,341281

Extra
1024 bytes 6,619031 6,174781
500 bytes 3,2455 3,0305
100 bytes 0,6675 0,6275

Table 17 March X WOM test results (32-bit access, 32-bit word limit)

Measurement Normal Result HW (DOC) Result
ROM usage (bytes) 428 434
RAM usage (bytes) 0 0
Stack usage (bytes) 0 0
Stack usage Extra (bytes) 0 0

Clock cycle
count

Destructive
1024 bytes 96613 89505
500 bytes 47354 43914
100 bytes 9722 9082

Non-destructive
1024 bytes 115084 107976
500 bytes 56393 52953
100 bytes 11561 10921

Extra
1024 bytes 211809 197593
500 bytes 103856 96976
100 bytes 21360 20080

Time Measured
(ms) @ 240 MHz

Destructive
1024 bytes 3,019156 2,797031
500 bytes 1,479813 1,372313
100 bytes 0,303813 0,283813

Non-destructive
1024 bytes 3,596375 3,37425
500 bytes 1,762281 1,654781
100 bytes 0,361281 0,341281

Extra
1024 bytes 6,619031 6,174781
500 bytes 3,2455 3,0305
100 bytes 0,6675 0,6275

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 35 of 38

Stack Test
Note: Whether normal or hardware implementation, the results are the same, because the stack test does not rely on

hardware.
Table 18 Stack test results

Measurement Result
ROM usage (bytes) 364
RAM usage (bytes) 33
Stack usage (bytes) – RamTest_Stack_Main 12
Stack usage (bytes) – RamTest_Stack_Proc 12
Stack usage (bytes) – RamTest_Stacks 12
Clock Cycle Count – RamTest_Stack_Main (only stack relocation) 135
Time Measured (us) @32 MHz – RamTest_Stack_Main 4.21
Clock Cycle Count – RamTest_Stack_Proc (only stack relocation) 136
Time Measured (us) @32 MHz – RamTest_Stack_Proc 4.25
Clock Cycle Count – RamTest_Stacks (only stack relocation) 170
Time Measured (us) @32 MHz – RamTest_Stacks 5.31

HW supporting functions
The following table lists the ROM and RAM resources needed to support using the peripherals DOC.

Table 19 HW supporting function results

Measurement Result
ROM usage (bytes) 248
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycle Count – RamTest_March_HW_Init 71
Time Measured (us) @32 MHz – RamTest_March_HW_Init 2.22
Clock Cycle Count – RamTest_March_HW_PreTest 452
Time Measured (us) @32 MHz – RamTest_March_HW_PreTest 14.13
Clock Cycle Count – RamTest_March_HW_Is_Init 57
Time Measured (us) @32 MHz – RamTest_March_HW_Is_Init 1.78

 Clock

Table 20 Clock test results

Measurement Internal Reference Clock
Result

External Reference Clock
Result

ROM usage (bytes) 608 1028
RAM usage (bytes) 4 4
Stack usage (bytes) 56 56
Clock Cycle Count 10375 2238
Time measured (us) @ 32 MHz 324.22 69.94

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 36 of 38

 Independent Watchdog
Table 21 Independent Watchdog test results

Measurement Result
ROM usage (bytes) 132
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycles Count – IWDT_Init 58
Time measured (us) @ 32 MHz – IWDT_Init 1.81
Clock Cycles Count – IWDT_Kick 50
Time measured (us) @ 32 MHz – IWDT_Kick 1.56
Clock Cycles Count – IWDT_DidReset 68
Time measured (us) @ 32 MHz – IWDT_DidReset 2.13

 Voltage

Table 22 Voltage Monitoring test results

Measurement Result
ROM usage (bytes) 200
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycles Count 27728
Time measured (us) @ 32 MHz 866.5

 ADC14

Table 23 12-bit ADC Converter test results

Measurement Result
ROM usage (bytes) 524
RAM usage (bytes) 4
Stack usage (bytes) 24
Clock Cycles Count – Test_ADC14_Init 65
Time measured (us) @ 32 MHz – Test_ADC14_Init 2.03
Clock Cycles Count – Test_ADC14_Wait 354
Time measured (us) @ 32 MHz – Test_ADC14_Wait 11.06
Clock Cycles Count – Test_ADC14_Start 82
Time measured (us) @ 32 MHz- Test_ADC14_Start 2.56
Clock Cycles Count (clock cycles) – Test_ADC14_CheckResult 120
Time measured (us) @ 32 MHz – Test_ADC14_CheckResult 3.75

 Temperature

Table 24 Temperature sensor test results

Measurement Result
ROM usage (bytes) 316
RAM usage (bytes) 8
Stack usage (bytes) 36
Clock Cycles Count – Temperature_Init 87
Time measured (us) @ 32 MHz – Temperature_Init 2.72
Clock Cycles Count – Temperature_Start 121
Time measured (us) @ 32 MHz – Temperature_Start 3.78
Clock Cycles Count – Temperature_CheckResult 134
Time measured (us) @ 32 MHz – Temperature_CheckResult 4.19

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 37 of 38

 Port Output Enable
Table 25 Port Output Enable test results

Measurement Result
ROM usage (bytes) 1068
RAM usage (bytes) 4
Stack usage (bytes) 0
Clock Cycles Count – GPT_init 628
Time measured (us) @ 240MHz – GPT_init 19.63
Clock Cycles Count – POE_Init 267
Time measured (us) @ 240MHz – POE_Init 8.34

4. Additional Information
4.1 Reading an IO Pin State
The actual value of an IO pin can always be read by reading the corresponding pin’s Port mn Pin Function Select
Register (PmnPFS). For details, see section 16.2.5 of Synergy S1 Hardware Manual:

Figure 2 PmnPFS Register

Renesas Synergy™ Platform S1 Series MCU Diagnostic Software User Guide

R11AN0260EU0100 Rev. 1.0 Page 38 of 38

Website and Support
Support: https://synergygallery.renesas.com/support

Technical Contact Details:

• America: https://www.renesas.com/en-us/support/contact.html
• Europe: https://www.renesas.com/en-eu/support/contact.html
• Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

https://synergygallery.renesas.com/support
https://www.renesas.com/en-us/support/contact.html
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Rev. Date
Description
Page Summary

1.00 Dec 11, 2017 — Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device
operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs.
Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using
insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded.
The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar
precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate
and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset
signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset
process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of
such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product
documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS
products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic
noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal
during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external
resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while
program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the
area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering
noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the
area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not
access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will
not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a
different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the
ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated
noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

	1. Tests
	1.1 CPU
	1.1.1 Software API

	1.2 ROM
	1.2.1 CRC32C Algorithm
	1.2.2 CRC Software API

	1.3 RAM
	1.3.1 Algorithms
	1.3.2 Software API

	1.4 Clock
	1.5 Independent Watchdog Timer
	1.6 Voltage
	1.7 ADC14
	1.8 Temperature
	1.9 Port Output Enable (POE)

	2. Example Usage
	2.1 CPU
	2.1.1 Power-Up
	2.1.2 Periodic

	2.2 ROM
	2.2.1 Power-Up
	2.2.2 Periodic

	2.3 RAM
	2.3.1 Power-Up
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer
	2.6 Voltage
	2.7 ADC14
	2.7.1 Power-Up
	2.7.2 Periodic

	2.8 Temperature
	2.8.1 Power-Up
	2.8.2 Periodic

	2.9 POE

	3. Benchmarking
	3.1 Environment
	3.2 Results
	3.2.1 CPU
	3.2.2 ROM
	3.2.3 RAM
	3.2.4 Clock
	3.2.5 Independent Watchdog
	3.2.6 Voltage
	3.2.7 ADC14
	3.2.8 Temperature
	3.2.9 Port Output Enable

	4. Additional Information
	4.1 Reading an IO Pin State

