
 Application Note

R01AN3492EU0101 Rev.1.01 Page 1 of 52
Oct 10, 2016

Renesas Synergy™ S7G2 Group

IEC60730 Self-Test Code for Synergy S7G2 MCU
Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

 Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

 Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

 Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers/Stoves will tend to fall
under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730 class B safety standards. These routines have been certified by VDE Test and Certification Institute
GmbH and a copy of the Test Certificate is available in the download package for this Application Note (See Note 1
below).

Although these routines were developed using IEC60730 compliance as a basis, they can be implemented in any system
for self testing of Renesas MCUs.

The software routines provided are to be used after reset and also during the program execution. The end user has the
flexibility of how to integrate these routines into their overall system design but this document and the accompanying
sample code provide an example of how to do this.

It is worth noting that the definition of error handling routines is demanded to the user as well as interrupt handler
routines. Since errors that are covered by the software routines are very critical (e.g. PC failure) and the correct SW
functionality cannot be assured it is strongly recommended to the user to not only rely on SW error handling, but to also
use HW safety mechanisms, e.g. the utilization of the Independent Watchdog (iWDT).

Note 1. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm IEC
60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm contains just a single sheet
that jumps to the IEC 60730-1 for definitions, information and applicable paragraphs.

Target Device
Renesas Synergy S7G2 Group MCU

R01AN3492EU0101
Rev.1.01

Oct 10, 2016

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 2 of 52
Oct 10, 2016

Contents

1. Tests .. 3
1.1 CPU ... 3
1.2 ROM .. 11
1.3 RAM .. 15
1.4 Clock ... 24
1.5 Independent Watchdog Timer.. 26
1.6 Voltage ... 28
1.7 ADC12 ... 28
1.8 Temperature... 32
1.9 Port Output Enable (POE) .. 34

2. Example Usage ... 37
2.1 CPU ... 37
2.2 ROM .. 37
2.3 RAM .. 38
2.4 Clock ... 39
2.5 Independent Watchdog Timer.. 40
2.6 Voltage ... 42
2.7 ADC12 ... 42
2.8 Temperature... 42
2.9 POE ... 43

3. Benchmarking .. 43
3.1 Environment .. 43
3.2 Results ... 44

4. Additional Information ... 51
4.1 Reading an IO Pin State .. 51

Website and Support ... 52

Revision History .. 1

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products .. 2

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 3 of 52
Oct 10, 2016

1. Tests
1.1 CPU
This section describes CPU tests routines. Reference IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.1 CPU.

The following CPU registers are tested: R0->R12. MSP, PSP, LR, APSR, BASEPRI and CONTROL. In addition, these
FPU registers are also tested: S0->S31. CPACR, FPCCR, FPCAR, FPSCR and FPDSCR.

The source file cpu_test.c provides implementation of the CPU test using C language and relies on assembly
language function to access the registers (that is, CPU_Test_Control). File cpu_test_coupling.c is also required to
use the coupling test version of the General Purpose Registers. Coupling test relies on assembly language functions:

• TestGPRsCouplingStart_A
• TestGPRsCouplingR1_R3_A
• TestGPRsCouplingR4_R6_A
• TestGPRsCouplingR7_R9_A
• TestGPRsCouplingR10_R12_A
• TestGPRsCouplingR0_A
• TestGPRsCouplingStart_B
• TestGPRsCouplingR1_R3_B
• TestGPRsCouplingR4_R6_B
• TestGPRsCouplingR7_R9_B
• TestGPRsCouplingR10_R12_B
• TestGPRsCouplingR0_B
• TestGPRsCouplingEnd

Alternatively, CPU_Test_General_Low, CPU_Test_General_High assembly language functions are used to test GPRS
registers.

The cpu_test.c source file relies also on FPU_Control assembly language function to access the FPU control
registers. File fpu_test_coupling.c is also required if using the coupling test version of the FPU extension
registers:

• TestFPUCouplingStart_A
• TestFPUCouplingS0_S3_A
• TestFPUCouplingS4_S7_A
• TestFPUCouplingS8_S11_A
• TestFPUCouplingS12_S15_A
• TestFPUCouplingS16_S19_A
• TestFPUCouplingS20_S23_A
• TestFPUCouplingS24_S27_A
• TestFPUCouplingS28_S31_A
• TestFPUCouplingStart_B
• TestFPUCouplingS0_S3_B
• TestFPUCouplingS4_S7_B
• TestFPUCouplingS8_S11_B
• TestFPUCouplingS12_S15_B
• TestFPUCouplingS16_S19_B
• TestFPUCouplingS20_S23_B
• TestFPUCouplingS24_S27_B
• TestFPUCouplingS28_S31_B
• TestFPUCouplingEnd

Alternatively, FPU_Exten assembly language function is used to test FPU extension registers

The source file cpu_test.h provides the interface to the CPU tests. The file S7G2_registers.h includes definitions
of S7G2 registers.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 4 of 52
Oct 10, 2016

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return values to
indicate the result of a test. Instead the user of these tests must provide an error handling function with the following
declaration:

xtern void CPU_Test_ErrorHandler(void);

The CPU test will jump to this function if an error is detected. This function must not return.

All the test functions follow the rules of register preservation following a C function call. Therefore the user can call
these functions like any normal C function without any additional responsibilities for saving register values beforehand.

1.1.1 Software API
Table 1 Software API Source files

File name
cpu_test.h, fpu_test.h
cpu_test_coupling.c, cpu_test.c,
fpu_test_coupling.c
TestGPRsCouplingStart_A.asm,
TestGPRsCouplingR1_R3_A.asm,
TestGPRsCouplingR4_R6_A.asm,
TestGPRsCouplingR7_R9_A.asm,
TestGPRsCouplingR10_R12_A.asm,
TestGPRsCouplingR0_A.asm,
TestGPRsCouplingStart_B.asm,
TestGPRsCouplingR1_R3_B.asm,
TestGPRsCouplingR4_R6_B.asm,
TestGPRsCouplingR7_R9_B.asm,
TestGPRsCouplingR10_R12_B.asm,
TestGPRsCouplingR0_B.asm,
TestGPRsCouplingEnd.asm,
CPU_Test_Control.asm,
CPU_Test_General_Low.asm,
CPU_Test_General_High.asm,
fpu_control.asm,
TestFPUCouplingStart_A.asm,
TestFPUCouplingS0_S3_A.asm,
TestFPUCouplingS4_S7_A.asm,
TestFPUCouplingS8_S11_A.asm,
TestFPUCouplingS12_S15_A.asm,
TestFPUCouplingS16_S19_A.asm,
TestFPUCouplingS20_S23_A.asm,
TestFPUCouplingS24_S27_A.asm,
TestFPUCouplingS28_S31_A.asm,
TestFPUCouplingStart_B.asm,
TestFPUCouplingS0_S3_B.asm,
TestFPUCouplingS4_S7_B.asm,
TestFPUCouplingS8_S11_B.asm,
TestFPUCouplingS12_S15_B.asm,
TestFPUCouplingS16_S19_B.asm,
TestFPUCouplingS20_S23_B.asm,
TestFPUCouplingS24_S27_B.asm,
TestFPUCouplingS28_S31_B.asm,
TestFPUCouplingEnd.asm,
fpu_exten.asm

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 5 of 52
Oct 10, 2016

Syntax

void CPU_TestAll(void)

Description

Runs through all the tests detailed below in the following order:

1. If using Coupling GPR Tests (*1. see below):
CPU_Test_GPRsCouplingPartA

CPU_Test_GPRsCouplingPartB

If not using Coupling GPR test:

CPU_Test_General_Low

CPU_Test_General_High

2. CPU_Test_Control
3. CPU_Test_PC
4. If using Coupling FPU extension registers Tests (*2. see below):

FPU_Test_FPUCouplingPartA

FPU_Test_FPUCouplingPartB

If not using Coupling GPR test:

FPU_Exten

5. FPU_Control

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is called in
unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged mode. In addition, since
in CPU_Test_Control function tests stack pointer registers (that is, MSP and PSP), then it is necessary to disable stack
pointer monitoring (MSPMPUCTL.ENABLE = 0. PSPMPUCTL.ENABLE = 0) before running CPU_TestAll function
and restore its setting after function return.

It is also the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

See the individual tests for a full description.

*1. A #define USE_TEST_GPRS_COUPLING in the code is used to select which functions will be used to test the
General Purpose Registers.

*2 A #define USE_TEST_FPU_COUPLING in the code is used to select which functions will be used to test the FPU
extension registers.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 6 of 52
Oct 10, 2016

Syntax

void CPU_Test_GPRsCouplingPartA(void)

Description

Tests general purpose registers R0 to R12. Coupling faults between the registers are detected.

This is Part A of a complete GPR test. Use function CPU_Test_GPRsCouplingPartB to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GPRsCouplingPartB(void)

Description

Tests general purpose registers R0 to R12. Coupling faults between the registers are detected.

This is Part B of a complete GPR test. Use function CPU_Test_GPRsCouplingPartA to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 7 of 52
Oct 10, 2016

Syntax

void CPU_Test_General_Low(void)

Description

Test registers R1. R2. R3. R4. R5. R6 and R7. These are the general purpose registers. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to disable exception during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_General_High(void)

Description

Test registers R8. R9. R10. R11 and R12. These are the general purpose registers. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to disable exceptions during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 8 of 52
Oct 10, 2016

Syntax

void CPU_Test_Control(void)

Description

Tests control registers PSP, MSP, LR, APSR, BASEPRI, CONTROL.

This test assumes registers R1 to R4 are working.

 Generally the test procedure for each register is as follows:

 For each register:

 1. Write h'55555555 to.

 2. Read back and check value equals h'55555555.

 3. Write h'AAAAAAAA to.

 4. Read back and check value equals h'AAAAAAAA.

Note however that there are some cases where restrictions on specific bits within a register do not allow this procedure.
For these cases other test values have been chosen.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is called in
Unprivileged Mode the test will fail as some of the register bits are not accessible in Unprivileged Mode.

It is also the calling function’s responsibility to disable exceptions during this test.

NOTE: FAULTMASK and PRIMASK are not tested since this test requires exceptions be disabled. Thus they are not
activated during the test modifying FAULTMASK and PRIMASK.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 9 of 52
Oct 10, 2016

Syntax

void CPU_Test_PC (void)

Description

This function provides the Program Counter (PC) register test.

This provides a confidence check that the PC is working.

It tests that the PC is working by calling a function that is located in its own section so that it can be located away from
this function, so that when it is called more of the PC Register bits are required for it to work.

So that this function can be sure that the function has actually been executed it returns the inverse of the supplied
parameter. This return value is checked for correctness.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void FPU_Test_FPUCouplingPartA (void)

Description

Tests FPU extension registers S0 to S31. Coupling faults between the registers are detected.

This is Part A of a complete FPU extension register test, use function FPU_Test_FPUCouplingPartB to complete the
test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 10 of 52
Oct 10, 2016

Syntax

void FPU_Test_FPUCouplingPartB(void)

Description

Tests FPU extension registers S0 to S31. Coupling faults between the registers are detected.

This is Part B of a complete FPU extension register test, use function FPU_Test_FPUCouplingPartA to complete the
test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void FPU_Exten(void)

Description

Test FPU extension registers S0 to S31. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to disable exception during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 11 of 52
Oct 10, 2016

Syntax

void FPU _Control(void)

Description

Tests FPU control registers CPACR, FPCCR, FPCAR, FPSCR and FPDSCR.

This test assumes registers R1 to R10 are working.

 Generally the test procedure for each register is as follows:

 For each register:

 1. Write h'55555555 to.

 2. Read back and check value equals h'55555555.

 3. Write h'AAAAAAAA to.

 4. Read back and check value equals h'AAAAAAAA.

Note however that there are some cases where restrictions on specific bits within a register do not allow this procedure.
For these cases other test values have been chosen.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is called in
Unprivileged Mode the test will fail as some of the register bits are not accessible in Unprivileged Mode.

It is also the calling function’s responsibility to disable exceptions during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

1.2 ROM
This section describes the ROM/Flash memory test using CRC routines. Reference IEC 60730: 1999+A1:2003 Annex
H – H2.19.4.1 CRC – Single Word.

CRC is a fault/error control technique which generates a single word or checksum to represent the contents of memory.
A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction) of the
message bit stream, by a predefined (short) bit stream of length n + 1. which represents the coefficients of a polynomial
with degree n. Before the division, n zeros are appended to the message stream. CRCs are popular because they are
simple to implement in binary hardware and are easy to analyses mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared with
the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. This complication has arisen because big and little endian systems were developed to work
together that employed serial data transfers where bit order became important. This implementation will produce the
same result as the IAR for ARM toolchain does using the Checksum option. Therefore if you are using the IAR for
ARM Toolchain to automatically insert a reference CRC into the ROM the value can be compared directly with the one
calculated.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 12 of 52
Oct 10, 2016

1.2.1 CRC32C Algorithm
The Synergy S7G2 includes a CRC module that includes support for the CRC32C. This software set the CRC module to
produce a 32-bit CRC32C:

• Polynomial = 0x1EDC6F41 (x32 + x28 + x27 + x26 + x25 + x23 + x22 + x20 + x19 + x18 + x14 + x13 + x11 + x10 + x9 + x8 +
x6 + 1)

• Width = 32 bits
• Initial value = 0xFFFFFFFF
• XOR with h’FFFFFFFF is performed on the output CRC

1.2.2 CRC Software API
All software is written in ANSI C.

The file S7G2_registers.h includes definitions of S7G2 registers.

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a
value stored in ROM.

Table 2: CRC Software API Source files

File name
crc.h, crc_verify.h
crc.c, CRC_Verify.c

These following functions are implemented in files CRC_Verify.h and CRC_Verify.c:

Syntax

bool CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description

This function compares a new CRC value with a reference CRC by supplying address where reference CRC is stored.

Input Parameters

uint32_t ui32_NewCRCValue Value of calculated new CRC value.

uint32_t ui32_AddrRefCRC Address where 32 bit reference CRC value is stored.

Output Parameters

NONE N/A

Return Values

bool True = Passed, false = Failed

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 13 of 52
Oct 10, 2016

These following functions are implemented in files crc.h and crc.c:

Syntax

void CRC_Init(void)

Description

Initializes the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

uint32_t CRC_Calculate(uint32_t* pui32_Data, uint32_t ui32_Length)

Description

This function calculates the CRC of a single specified memory area.

Input Parameters

uint32_t* pui32_Data Pointer to start of memory to be tested.

uint32_t ui32_Length Length of the data in long words.

Output Parameters

NONE N/A

Return Values

Uint32_t The 32-bit calculated CRC32C value.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 14 of 52
Oct 10, 2016

The following functions are used when the memory area cannot simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too
long in a single function call.

Syntax

void CRC_Start(void)

Description

Prepares the module for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void CRC_AddRange(uint32_t* pui32_Data, uint32_t ui32_Length)

Description

Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one address range.
Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result to get the CRC
value.

Input Parameters

uint32_t* pui32_Data Pointer to start of memory range to be tested.

uint32_t ui32_Length Length of the data in long words.

Output Parameters

NONE N/A

Return Values

None N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 15 of 52
Oct 10, 2016

Syntax

uint32_t CRC_Result(void)

Description

Calculates the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was
called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

uint32_t The calculated CRC32C value.

1.3 RAM
March tests are a family of tests that are well recognized as an effective way of testing RAM.

A March test consists of a finite sequence of March elements. A March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general, the more March elements the algorithm consists of, the better its fault coverage will be but at the expense of
a slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values) but the supplied test functions
provide a non-destructive option so that memory contents can be preserved. This is achieved by copying the memory to
a supplied buffer before running the actual algorithm and then restoring the memory from the buffer at the end of the
test. The API includes an option for automatically testing the buffer as well as the RAM test area.

The area of RAM being tested cannot be used for anything else while it is being tested. This makes the testing of RAM
used for the stack particularly difficult. To help with this problem the API includes functions which can be used for
testing the stack.

The following section introduces the specific March Tests. Following that is the specification of the software APIs.

1.3.1 Algorithms
(1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF). Any fault that affects the address decoder:
• With a certain address, no cell will be accessed.

• A certain cell is never accessed.

• With a certain address, multiple cells are accessed simultaneously.

• A certain cell can be accessed by multiple addresses.

These are the 6 March elements:

1. Write all zeros to array.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 16 of 52
Oct 10, 2016

2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.
3. Starting at lowest address, read ones, write zeros, increment up array bit by bit.
4. Starting at highest address, read zeros, write ones, decrement down array bit by bit.
5. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
6. Read all zeros from array.

(2) March X

Note: This algorithm has not been implemented for the Synergy and is only presented here for information as it relates to
the March X WOM version below.

The March X algorithm consists of 4 March elements with a total of 6 operations. It detects the following faults:

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the 4 March elements:

1. Write all zeros to array.
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.
3. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
4. Read all zeros from array.

(3) March X (Word-Oriented Memory version)

The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm in two
stages. First, the standard March X is converted from using a single-bit data pattern to using a data pattern equal to the
memory access width. At this stage the test is primarily detecting inter-word faults including Address Decoder faults. The
second stage is to add an additional two March elements. The first uses a data pattern of alternating high/low bits then the
second uses the inverse. The addition of these elements is to detect intra-word coupling faults.

These are the 6 March elements:

1. Write all zeros to array.
2. Starting at lowest address, read zeros, write ones, increment up array word by word.
3. Starting at highest address, read ones, write zeros, decrement down word by word.
4. Starting at lowest address, read zeros, write h’AAs, increment up array word by word.
5. Starting at highest address, read h’AAs, write h’55s, decrement down word by word.
6. Read all h’55s from array.

1.3.2 Software API
Two implementations of the RAM tests are available:

1) Standard implementation.

2) Hardware (HW) implementation. This version uses the Data Operation Circuit (DOC) and optionally a DMAC
channel to help perform the tests.

Both implementations share the same core API but the ‘HW’ implementation has some additional functions. Please see
details in section peter

(1) March C API

This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the following:

1. RAMTEST_MARCH_C_ACCESS_SIZE_8BIT
2. RAMTEST_MARCH_C_ACCESS_SIZE_16BIT
3. RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed the test up as
well as reducing stack and code size. This is done by limiting the size of the variable used to hold the number of
‘words’ that the test area contains. The ‘word’ size is the selected access width.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 17 of 52
Oct 10, 2016

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the following:

1. RAMTEST_MARCH_C_MAX_WORDS_8BIT (Max words in test area is 0xFF)
2. RAMTEST_MARCH_C_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
3. RAMTEST_MARCH_C_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 3: Source files:

Standard HW
ramtest_march_c.h, ramtest_march_c.h,

ramtest_march_HW.h
ramtest_march_c.c, ramtest_march_c_HW.c,

ramtest_march_HW.c.

The source is written in ANSI C and uses S7G2_registers.h to access peripheral registers.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word.

Declaration

bool RamTest_March_C(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test using March C (Goor 1991) algorithm.

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe

For a destructive memory test, set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 18 of 52
Oct 10, 2016

Declaration

bool RamTest_March_C_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non Destructive RAM memory test using March C (Goor 1991) algorithm.

This function differs from the RamTest_March_C function by testing the ‘RAMSafe’ buffer before using it. If the test
of the ‘RAMSafe’ buffer fails then the test will be aborted and the function will return false.

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

(2) March X WOM API

This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_X_WOM_ACCESS_SIZE in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_8BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_16BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_32BIT

In order to speed up the run time of the test you can choose to limit the maximum size of RAM that can be tested with a
single function call. This is done by limiting the size of the variable used to hold the number of ‘words’ that the test area
contains. The ‘word’ size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_ X_WOM_MAX_WORDS in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_MAX_WORDS_8BIT (Max words in test area is 0xFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 4: Source files:

Standard HW
ramtest_march_x_wom.h ramtest_march_HW.h,

ramtest_march_x_wom.h
ramtest_march_x_wom.c ramtest_march_HW.c,

ramtest_march_x_wom_HW.c

The source is written in ANSI C and uses S7G2_registers.h to access peripheral registers.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 19 of 52
Oct 10, 2016

Declaration

bool RamTest_March_X_WOM(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters

uint32_t
ui32_StartAddr

Address of the first word of RAM to be tested. This must be aligned with the selected memory
access width.

uint32_t
ui32_EndAddr

Address of the last word of RAM to be tested. This must be aligned with the selected memory
access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe

For a destructive memory test set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

Declaration

bool RamTest_March_X_WOM_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non-Destructive RAM memory test based on March X algorithm converted for WOM. This function differs from the
RamTest_March_X_WOM function by testing the ‘RAMSafe’ buffer before using it. If the test of the ‘RAMSafe’
buffer fails then the test will be aborted and the function will return false.

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

void* p_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

(3) March C and March X WOM HW Implementation specific API.

The ‘HW’ implementations of the March C and the March X WOM tests use the Data Operation Circuit (DOC) and
optionally a DMAC channel to help perform the tests. The DMAC is used to initialize the RAM under test and the DOC
is used to compare values read back from RAM with expected values.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 20 of 52
Oct 10, 2016

It is the user’s responsibility to ensure that nothing else accesses the DOC or chosen DMAC channel during the RAM
tests.

The optional use of the DMAC is controlled using the following #defines in file ramtest_march_HW.h:

#define Meaning if #defined
‘RAMTEST_USE_DMAC’ The DMAC will be initialized.
‘DMAC_CHANNEL’ Select the DMAC channel to use. See file for details.

If ‘RAMTEST_USE_DMAC’ has been defined than a specific HW test may enable use of the DMAC. This is done using
the following:

#define File where defined
‘RAMTEST_MARCH_C_USE_DMAC’ ramtest_march_c_HW.c
‘RAMTEST_MARCH_X_WOM_USE_DMAC’ ramtest_march_x_wom_HW.c

Declaration

void RamTest_March_HW_Init(void);

Description

Initialize the hardware (DOC and optionally DMAC) used by the ‘HW’ implementations of the RAM tests.

The DMAC is only used if 'RAMTEST_USE_DMAC' is defined.

Call this function before using any other RAM Test function that uses a HW implementation.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

void N/A

Declaration

bool RamTest_March_HW_PreTest(void);

Description

This may be used to check if the hardware (DOC and DMAC) are functioning correctly before using.

A quick functional test of the DOC and (if RAMTEST_USE_DMAC is #defined) the DMAC is performed.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 21 of 52
Oct 10, 2016

Declaration

bool RamTest_March_HW_Is_Init(void);

Description

Checks if RamTest_March_HW_Init has been called.

This is used by specific RAM tests to check that the HW has been initialized before trying to use it.

A user does not have to use this function.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

Declaration

void RamTest_March_HW_Wait_DMAC(void);

Description

Wait for the DMAC channel to complete a transfer.

This is used by specific RAM tests and does not need to be called by a user.

NOTE: In theory a user could add some code into this blocking loop. However, as this is called during RAM testing,
they would need to be very careful not to use any RAM that is involved in the current RAM test.

Note: Only available if RAMTEST_USE_DMAC is #defined.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

(4) RAM Test Stack API

This API enables a RAM test to be performed on an area of RAM that includes the stack. As the function that performs
the RAM test requires a stack these functions will, re-locate the stack to a supplied new RAM area allowing the original
stack area to be tested. Three functions are provided that can be called depending upon which stack (Main or Process) is
in the test area or if both are.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is called in
unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged mode.

NOTE: The stack testing functions make use of one of the March Ram tests presented previously by passing it in as a
function pointer. If using a test that requires initialization before use it is the user’s responsibility to ensure this has been
done before trying to use the test by calling one of these functions.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 22 of 52
Oct 10, 2016

Table 5: RAM Test Stack API Source files

File name
ramtest_stack.h
ramtest_stack.c
StartBothTestAssembly.asm,
StartMainTestAssembly.asm,
StartProcTestAssembly.asm

Declaration

bool RamTest_Stack_Main(uint32_t ui32_StartAddr,

 uint32_t ui32_EndAddr,

 void* p_RAMSafe,

 uint32_t ui32_NewMSP,

 TEST_FUNC fpTest_Func);

Description

RAM test of an area that includes the Main Stack (but not the Process stack).

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

void* p_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

uint32_t
ui32_NewUSP

New Stack pointer value for the Main stack to be relocated to.

TEST_FUNC
fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 23 of 52
Oct 10, 2016

Declaration
bool RamTest_Stack_Proc(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewPSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the Process Stack. (but not the Main stack)

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

void* p_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

uint32_t
ui32_NewPSP

New Stack pointer value for the Process stack to be relocated to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 24 of 52
Oct 10, 2016

Declaration

bool RamTest_Stacks(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewPSP,
 uint32_t ui32_NewMSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes both the Stacks (that is, Main and Process stacks).

Input Parameters

uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

void* p_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

uint32_t
ui32_NewPSP

New Stack pointer value for the Process stack to be relocated to.

uint32_t
ui32_NewMSP

New Stack pointer value for the Main stack to be relocated to.

TEST_FUNC
fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void*
const);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = Test or parameter check failed.

1.4 Clock
The Synergy S7G2 has a Clock Frequency Accuracy Measurement Circuit (CAC) which can be used to detect monitor
the Main clock frequency during run time.

Either one of MAIN, SUB_CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB or an External clock on the
CACREF pin can be used as a reference clock source.

If using an external reference clock:

1. #define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in file clock_monitor.h.

2. Be sure to provide target and reference clocks frequency in Hz.

If using one of the internal source clocks:

1. Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

2. Be sure to select the reference clock (through ref_clock input parameter).

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 25 of 52
Oct 10, 2016

3. Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupt can be
generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of
interrupt and handle them. See Section 2.4 for an example of interrupt activation. The allowable frequency range can be
adjusted using:

/*Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

In addition to the CAC function the Synergy S7G2 has an Oscillation Stop Detection Circuit. If the main clock stops,
the Middle-Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The
User of this module must handle the NMI interrupt and check the NMISR.OSTST bit.

Table 6: Clock Source files:

File name
clock_monitor.h
clock_monitor.c

The SW relies on S7G2_registers.h to access peripheral registers.

There are two versions of the ClockMonitor_Init function:

1. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

Syntax

void ClockMonitor_Init(clock_source_t target_clock, clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack);
Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and the
reference clock selected through ref_clock input parameter.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

clock_source_t target_clock
The target clock to be monitored. The clock shall be one of Main clock, Sub
clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK clock, and
PCLKB clock.

clock_source_t ref_clock
The reference clock to be used by CAC to monitor the target clock. The
clock shall be one of Main clock, Sub clock, HOCO clock, MOCO clock,
LOCO clock, IWDTCLK clock, and PCLKB clock.

uint32_t target_clock_frequency The target clock frequency in Hz

uint32_t ref_clock_frequency The reference clock frequency in Hz.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

Function to be called if the main clock deviates from the allowable range.

Output Parameters

NONE N/A

Return Values

None N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 26 of 52
Oct 10, 2016

2. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is defined.

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
uint32_t MainClockFrequency,

 uint32_t ExternalRefClockFrequency,
 CLOCK_MONITOR_CACREF_PIN ePin,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack);
Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and the
CACREF pin as a reference clock.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

clock_source_t target_clock
The target clock to be monitored. The clock shall be one among Main clock,
Sub clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK clock and
PCLKB clock.

uint32_t MainClockFrequency Main clock expected frequency in Hz.

uint32_t
ExternalRefClockFrequency

External reference clock frequency in Hz.

CLOCK_MONITOR_CACREF_PIN ePin
The pin to use for CACREF. See CLOCK_MONITOR_CACREF_PIN for
details.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

Function to be called if the main clock deviates from the allowable range or
if this function fails.

Output Parameters

NONE N/A

Return Values

None N/A

1.5 Independent Watchdog Timer
A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the watchdog
timer will not be refreshed by software as it is required to be and will therefore detect an error.

The Independent Watchdog Timer (iWDT) module of the Synergy S7G2 is used for this. It includes a windowing
feature so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be
configured to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for iWDT can
be done through the OFS0 register whose settings are controlled by the user (see Section 2.5 for an example of
configuration). A function is provided to be used after a reset to decide if the IWDT has caused the reset. The test
module relies on the S7G2_registers.h header file to access to peripheral registers.

Table 7: Independent Watchdog Timer Source files

File name
iwdt.h
iwdt.c

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 27 of 52
Oct 10, 2016

Syntax

void IWDT_Init (void)

Description

Initialize the independent watchdog timer. After calling this, the IWDT_kick function must then be called at the correct
time to prevent a watchdog timer error.

NOTE: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be handled
by user code which must check the NMISR.IWDTST flag.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void IWDT_Kick(void)

Description

Refresh the watchdog timer count.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

bool IWDT_DidReset(void)

Description

Returns true if the iWDT has timed out or not been refreshed correctly. This can be called after a reset to decide if the
watchdog timer caused the reset.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool True if watchdog timer has timed out, otherwise false.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 28 of 52
Oct 10, 2016

1.6 Voltage
The Synergy S7G2 has a Voltage Detection Circuit. This can be used to detect the power supply voltage (VCC) falling
below a specified voltage. The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate a NMI
interrupt when VCC drops below a specified level. The hardware is also capable of generating a reset but this behavior
is not supported in the sample code. The SW module relies on S7G2_registers.h header file to access peripheral
registers.

Table 8: Voltage Source files:

File name
voltage.h
voltage.c

Syntax

void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage)

Description

Initialize and start voltage monitoring. An NMI will be generated if VCC falls below the specified voltage.

NOTE: The Non-Maskable Interrupt (NMI) must be handled by user code which must check the NMISR.LVDST
flag.

Input Parameters

VOLTAGE_MONITOR_LEVEL eVoltage
The specified low voltage level. See declaration of enumerated type
VOLTAGE_MONITOR_LEVEL in voltage.h for details.

Output Parameters

NONE N/A

Return Values

None N/A

1.7 ADC12
The ADC12 has a diagnostic mode that can be used to test the ADC. The diagnostic mode can be configured so that a test
is performed every time the ADC is used normally for a conversion. The diagnostic reference voltage and hence the
expected result is automatically rotated between zero, half scale and full scale. The diagnostic SW provides two automatic
conversions (zero and full scale). The SW module relies on S7G2_registers.h header file to access peripheral registers.

Table 9: ADC12 Source files

File name
test_adc12.h
test_adc12.c

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 29 of 52
Oct 10, 2016

Syntax

void Test_ADC12_Init_u0(void)

Description

Initialize unit 0 of ADC12 module. This must be called before using any other ADC functions.

Input Parameters

None N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void Test_ADC12_Init_u1(void)

Description

Initialize unit 1 of ADC12 module. This must be called before using any other ADC functions.

Input Parameters

None N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

bool Test_ADC12_Wait_u0(void)

Description

This function waits while two ADC conversions are made by unit 0 of ADC12 module. This test does not preserve
ADC configuration and is therefore suitable as a power-on test rather than as a run-time periodic test.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = test failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 30 of 52
Oct 10, 2016

Syntax

bool Test_ADC12_Wait_u1(void)

Description

This function waits while two ADC conversions are made by unit 1 of ADC12 module. This test does not preserve
ADC configuration and is therefore suitable as a power-on test rather than as a run-time periodic test.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = test failed.

Syntax

void Test_ADC12_Start_u0(ADC12_ERROR_CALL_BACK Callback)

Description

Set up unit 0 of ADC module so diagnostic tests will be performed each time ADC is used. The diagnostic reference
voltage is automatically rotated (Zero, half VREF and VREH).

User code must now call the Test_ADC12_CheckResult function either periodically or following every ADC
completion to check the diagnostic result.

Input Parameters

ADC12_ERROR_CALL_BACK
Callback

Function to call if an error is detected.

NOTE: This function will only get called if Test_ADC12_CheckResult is called with
parameter bCallErrorHandler set true.

Output Parameters

NONE N/A

Return Values

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 31 of 52
Oct 10, 2016

Syntax

void Test_ADC12_Start_u1(ADC12_ERROR_CALL_BACK Callback)

Description

Set up unit 1 of ADC module so diagnostic tests will be performed each time ADC is used. The diagnostic reference
voltage is automatically rotated (Zero, half VREF and VREH).

User code must now call the Test_ADC12_CheckResult function either periodically or following every ADC
completion to check the diagnostic result.

Input Parameters

ADC12_ERROR_CALL_BACK
Callback

Function to call if an error is detected.

NOTE: This function will only get called if Test_ADC12_CheckResult is called
with parameter bCallErrorHandler set true.

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

bool Test_ADC12_CheckResult_u0(bool bCallErrorHandler)

Description

Check that ADC unit 0 diagnostic result is as expected.

This must be called after Test_ADC12_Start and then be called periodically or whenever an ADC conversion
completes.

NOTE: The actual result is allowed to be with a certain tolerance of the expected result. See ADC12_TOLERANCE
in test_ad12.c for details.

Input Parameters

bool bCallErrorHandler
Set true to call the error call-back function supplied to function Test_ADC12_Start,
otherwise false.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = test failed.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 32 of 52
Oct 10, 2016

Syntax

bool Test_ADC12_CheckResult_u1(bool bCallErrorHandler)

Description

Check the ADC unit 1 diagnostic result is as expected.

This must be called after Test_ADC12_Start and then be called periodically or whenever an ADC conversion
completes.

NOTE: The actual result is allowed to be with a certain tolerance of the expected result. See ADC12_TOLERANCE
in test_ad12.c for details.

Input Parameters

bool bCallErrorHandler
Set true to call the error call-back function supplied to function Test_ADC12_Start,
otherwise false.

Output Parameters

NONE N/A

Return Values

bool True = Test passed. False = test failed.

1.8 Temperature
The Synergy S7G2 has a Temperature Sensor module that can monitor the MCU temperature. The ADC12 module unit
1 is also required in conjunction with the Temperature Sensor. The SW module relies on S7G2_registers.h header
file to access peripheral registers.

Table 10: Temperature Source files:

File name
temperature.h
temperature.c

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 33 of 52
Oct 10, 2016

Syntax

void Temperature_Init(uint16_t Temperature_ADC_Value_Min,
 uint16_t Temperature_ADC_Value_Max,
 TEMPERATURE_ERROR_CALL_BACK Error_callback)
Description

Initialize the Temperature Sensor and enable the ADC12 module. Specify an allowed temperature range in terms of
ADC12 output values. After calling this function the Temperature_Start function must be called periodically to
perform an ADC conversion on the Temperature Sensor output and then the remaining functions must be used to
check the result.

Input Parameters

uint16_t
Temperature_ADC_Value_Min

Specify the minimum value that the ADC12 should output when reading the
temperature sensor.

uint16_t
Temperature_ADC_Value_Max

Specify the maximum value that the ADC12 should output when reading the
temperature sensor.

TEMPERATURE_ERROR_CALL_BACK
Error_callback

This function will be called by function Temperature_CheckResult if the
temperature (ADC12 Value) is outside the specified allowable range.

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void Temperature_Start(void);

Description

Start an ADC conversion to read the temperature. This will use the ADC12 module, destroying its current settings. It
is the user’s responsibility to ensure this behavior is not a problem.

Following this function use function Temperature_Read_Wait or Temperature_CheckResult.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 34 of 52
Oct 10, 2016

Syntax

void Temperature_Wait_Finish (void);

Description

This function blocks until a temperature conversion, started by Temperature_Start, has completed.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

uint16_t Temperature_Read_Wait (void);

Description

This function blocks until a temperature conversion, started by Temperature_Start, has completed and then returns
the ADC12 value.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

uint16_t ADC12 output value

bool Temperature_CheckResult(bool bCallErrorHandler)

Description

This function blocks until a temperature conversion, started by Temperature_Start, has completed and then checks if
the ADC12 value is within the range specified in Temperatire_Init.

Input Parameters

bCallErrorHandler
Set true to get the callback registered in Temperature_Init called if the
temperature falls outside the specified limits, otherwise set false.

Output Parameters

NONE N/A

Return Values

bool True: Result falls within specified limits. False: Result falls outside specified limits.

1.9 Port Output Enable (POE)
The Port Output Enable for the GPT (POEG) module can be used to place General PWM Timer (GPT) output pins in
the output disable state in one of the following ways: input level detection of the GTETRG pins; Output-disable request

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 35 of 52
Oct 10, 2016

from the GPT; Comparator interrupt request detection; Oscillation stop detection of the clock generation circuit;
Register settings.

This software demonstrates the setting of certain pins into the high-impedance state when a rising edge on GTETRGn
(n = A, B, C, D) input pin is detected or when oscillation stop is detected. Note that the user must configuration of
GTETRGn pin within POE_init function, as well as enable handling interrupts generated by the POE. See Section 2.9
for more details about enabling the handling of POE interrupt. The SW module relies on S7G2_registers.h header
file to access peripheral registers.

Table 11: Port Output Enable Source files

File name
POE.h, GPT.h
POE.c, GPT.c

Syntax

void POE_Init(POE_CALL_BACK Callback);

Description

This software configures the POE:

1. To put the GTIOCA and GTIOCB pins of all GPT channels in the high-impedance state if a rising edge on the
GTETRGn (n = A, B, C, D) input pin is detected. An interrupt is also generated.

Note that user shall ensure the configuration of GTETRGn pin correspondent to the POEG group which is intended
to be used. Take care that the pin choice strictly depends on the board where the microcontroller is placed.

2. To put the GTIOCA and GTIOCB pins of all GPT channels in the high-impedance state if Oscillation Stop is
detected.

Input Parameters

POE_CALL_BACK Callback Function to call if a rising edge on the GTETRGn input pin is detected.

Output Parameters

NONE N/A

Syntax

void POE_ClearFlags_ga(void);

Description

For POEG group A, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS
Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.

This will release the pins from the high-impedance state.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Syntax

void POE_ClearFlags_gb(void);

Description

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 36 of 52
Oct 10, 2016

For POEG group B, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS
Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.

This will release the pins from the high-impedance state.
Input Parameters

NONE N/A

Output Parameters

NONE N/A

Syntax

void POE_ClearFlags_gc(void);

Description

For POEG group C, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS
Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.

This will release the pins from the high-impedance state.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Syntax

void POE_ClearFlags_gd(void);

Description

For POEG group D, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS
Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.

This will release the pins from the high-impedance state.
Input Parameters

NONE N/A

Output Parameters

NONE N/A

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 37 of 52
Oct 10, 2016

Syntax

void GPT_Init(POE_group_t group);

Description

This function configures the GPT in order to associate GTIOCA and GTIOCB pins of each GPT channel to the POE
group stated by input parameter ‘group’.
Input Parameters

POE_group_t group POE group to associate the GTP channels.

Output Parameters

NONE N/A

2. Example Usage
This section gives to the user some useful suggestions about how to apply the released software.

The testing can be split into two parts:

1. Power-Up Tests. These are tests run once following a reset. They should be run as soon as possible but
especially if start-up time is important it may be permissible to run some initialization code before running all
the tests so that for example a faster main clock can be selected.

2. Periodic Tests. These are tests that are run regularly throughout normal program operation. This document
does not provide a judgment of how often a particular test should be ran. How the scheduling of the periodic
tests is performed is up to the user depending upon how their application is structured.

The following sections provide an example of how each test type should be used.

2.1 CPU
If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be
called. As any error in the CPU is very serious the aim of this function should be to get to a safe state, where software
execution is not relied upon, as soon as possible.

2.1.1 Power-Up
All the CPU tests should be run as soon as possible following a reset.

NOTE: The function must be called before the device is put in Unprivileged mode.

The function CPU_Test_All can be used to automatically run all the CPU tests.

2.1.2 Periodic
To test the CPU periodically, the function CPU_Test_All can be used, as it is for the power-up tests, to automatically
run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call, the user can choose to
call each of the individual CPU test functions in turn each time the CPU periodic test is scheduled.

2.2 ROM
The ROM is tested by calculating a CRC value (CRC32C) of its contents and comparing with a reference CRC value
that must be added to a specific location in the ROM not included in the CRC calculation.

The IAR for ARM Toolchain can be used to calculate and add a CRC value to the built file at a location specified by the
user. This can be done via a dialog in IAR. See

Figure 1: Adding Reference CRC.

The CRC module must be initialized before use with a call to the CRC_Init function.

Ensure that all ROM sections used are included in the CRC calculation that both IAR and the CRC Test code use so that
the results will match.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 38 of 52
Oct 10, 2016

Figure 1: Adding Reference CRC

2.2.1 Power-Up
All the ROM memory used must be tested at power-up.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated CRC
value.

If the ROM used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.

2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.

3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function
CRC_Verify.

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

2.2.2 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is
contiguous, as this allows the CRC value to be calculated in sections so that no single function call takes too long.
Follow the procedure as specified for the power-up tests and ensure that each address range is small enough that a call
to CRC_AddRange does not take too long.

2.3 RAM
It is very important to realize that the area of RAM that needs to be tested may change dramatically depending upon
your project’s memory map.

If you are using the ‘HW’ versions of the RAM Tests (where the DOC and possibly DMAC are used), then you must
call function RamTest_March_HW_Init prior to running the test. The following #define in file ramtest_march_HW.h
makes this selection:

#define USE_HW_VERSION_OF_RAM_TESTS

When testing RAM, it is important to remember the following points:

1. RAM being tested cannot be used for anything else including the current stack.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 39 of 52
Oct 10, 2016

2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and restored
from.

3. Any test of the stack requires a RAM buffer where the stack can be relocated to.

4. There are two stacks, Main and Process. It is the current stack that must be relocated before being used.

5. To relocate the stack, the device must be in supervisor mode. The device automatically enters default mode
when handling an interrupt.

2.3.1 Power-Up
At power-up, a full destructive test can be performed on the RAM other than the Stack. The Stack must be tested with a
non-destructive test. However, if startup time is very important, it might be possible to fine tune this so that only the
area of Stack used before the power-up RAM test is performed using the slower non-destructive test and the rest of the
Stack tested with a destructive test.

2.3.2 Periodic
All periodic tests must be non-destructive.

It is assumed that the periodic tests are called from an interrupt handler and therefore the device is in privileged mode.

2.4 Clock
The monitoring of the main clock is set up with a single function call to ClockMonitor_Init. There are two versions of
this file depending on the choice between using an external or internal reference clock as decided by the following
#define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:

#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

#define MAIN_CLOCK_FREQUENCY_HZ (24000000) // 24 MHz
#define EXTERNAL_REF_CLOCK_FREQUENCY_HZ (15000) // 15kHz

 ClockMonitor_Init(MAIN,
MAIN_CLOCK_FREQUENCY_HZ,EXTERNAL_REF_CLOCK_FREQUENCY_HZ,eCLOCK_MONITOR_CACREF_
A,CAC_Error_Detected_Loop);

#else

#define TARGET_CLOCK_FREQUENCY_HZ (24000000) // 24 MHz
#define REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15kHz

 ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,
REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);

/*NOTE: The IWDTCLK clock must be enabled before starting the clock
monitoring.*/

#endif

This can be called as soon as the main clock has been configured and the IWDT has been enabled. See Section 1.5 for
enabling the iWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Cortex-M4 Nested
Vectored Interrupt Controller (NVIC) should be configured in order to handle it.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number
correspondent to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In
particular, it is necessary to configure one IELSR register so that it is linked to the aforementioned CAC events:

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 40 of 52
Oct 10, 2016

IELSRn.IELS = 0x87; // (CAC_FERRI)
IELSRn.IELS = 0x89; // (CAC_OVFI)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions are set:

NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

Where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number that are defined by
the user1.

If oscillation stop is detected, an NMI interrupt is generated. User code must handle this NMI interrupt and check the
NMISR.OSTST flag as shown in this example:

if(1 == R_ICU->NMISR_b.OSTST)
{
 Clock_Stop_Detection();

 /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
 R_ICU->NMICLR_b.OSTCLR = 1;
}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

2.5 Independent Watchdog Timer
In order to configure the Independent Watchdog Timer, it is necessary to set coherently the OFS0 register. The
following code can be used to set the value that has to be stored at the OFS0 memory allocation (OFS0 address =
0x00000400):

/* IWDT Start Mode Select */
#define IWDTSTRT_ENABLED (0x00000000)
#define IWDTSTRT_DISABLED (0x00000001)

/*Time-Out Period selection*/
#define IWDT_TOP_128 (0x00000000)
#define IWDT_TOP_512 (0x00000001)
#define IWDT_TOP_1024 (0x00000002)
#define IWDT_TOP_2048 (0x00000003)

/*Clock selection. (IWDTCLK/x) */
#define IWDT_CKS_DIV_1 (0x00000000) // 0b0000
#define IWDT_CKS_DIV_16 (0x00000002) // 0b0010
#define IWDT_CKS_DIV_32 (0x00000003) // 0b0011
#define IWDT_CKS_DIV_64 (0x00000004) // 0b0100
#define IWDT_CKS_DIV_128 (0x0000000F) // 0b1111
#define IWDT_CKS_DIV_256 (0x00000005) // 0b0101

/*Window start Position*/
#define IWDT_WINDOW_START_25 (0x00000000)
#define IWDT_WINDOW_START_50 (0x00000001)
#define IWDT_WINDOW_START_75 (0x00000002)
#define IWDT_WINDOW_START_NO_START (0x00000003) /*100%*/

1 See Table 2-16 of “Cortex-M4 Devices: Generic User Guide”, first release, 16 December 2010 for more details about
IRQ numbers.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 41 of 52
Oct 10, 2016

/*Window end Position*/
#define IWDT_WINDOW_END_75 (0x00000000)
#define IWDT_WINDOW_END_50 (0x00000001)
#define IWDT_WINDOW_END_25 (0x00000002)
#define IWDT_WINDOW_END_NO_END (0x00000003) /*0%*/

/*Action when underflow or refresh error */
#define IWDT_ACTION_NMI (0x00000000)
#define IWDT_ACTION_RESET (0x00000001)

/*IWDT Stop Control*/
#define IWDTSTPCTL_COUNTING_CONTINUE (0x00000000)
#define IWDTSTPCTL_COUNTING_STOP (0x00000001)

#define BIT0_RESERVED (0x00000001)
#define BIT13_RESERVED (BIT0_RESERVED << 13)
#define BIT15_RESERVED (BIT0_RESERVED << 15)

#define OFS0_IWDT_RESET_MASK (0xFFFF0000)

/*This define is used to configure the iWDT peripheral*/
#define OFS0_IWDT_CFG (BIT15_RESERVED | BIT13_RESERVED | BIT0_RESERVED |
(IWDTSTRT_ENABLED << 1) | (IWDT_TOP_1024 << 2) | (IWDT_CKS_DIV_1 << 4) |
(IWDT_WINDOW_END_NO_END << 8) | (IWDT_WINDOW_START_NO_START << 10) |
(IWDT_ACTION_RESET << 12) | (IWDTSTPCTL_COUNTING_CONTINUE << 14))

The value OFS0_IWDT__CFG is stored at the OFS0 address at compile time in order to configure the Independent
Watchdog Timer. In particular, the example enables the iWDT to set a time-out period of 1024 clock cycles at
IWDTCLK/1 clock frequency and counting also during sleep mode of the microcontroller. The example does not set
any start/end of watchdog window and configure a reset in case of watchdog expiration.

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to IWDT_Init:

/*Setup the Independent WDT.*/
IWDT_Init();

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out and
performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the
specified window. A watchdog timer refresh is called by calling this:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle the resulting
interrupt.

If the watchdog timer has been configured to perform a reset on error detection then following a reset the code should
check if the IWDT caused the reset by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())
{
 /*todo: Handle a watchdog reset.*/
 while(1){
 /*DO NOTHING*/
 }
}

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 42 of 52
Oct 10, 2016

2.6 Voltage
The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init
function. This should be setup as soon as possible following a power on reset. The following example sets up the
voltage monitor to generate an NMI if the voltage drops below 2.99 V.

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_2_99);

If a low voltage condition is detected, an NMI interrupt will be generated that the user must handle:

 /*Low Voltage LVD1*/
 if(1 == R_ICU->NMISR_b.LVD1ST)
 {
 Voltage_Test_Failure();

 /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/
 R_ICU->NMICLR_b.LVD1CLR = 1;
 }

2.7 ADC12
The ADC12 module has a built in diagnostic mode which allows various reference voltages to be tested against.

To account for allowed inaccuracies, the expected result is allowed to fall within a tolerance defined using:

 #define ADC12_TOLERANCE 8

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this tolerance could
be tightened.

The ADC12 Test module must be initialized with a call to Test_ADC12_Init_uX (X = 0. 1).

2.7.1 Power-Up
At power-up, the ADC12 module can be tested using the Test_ADC12_Wait_uX function. This function waits until two
AD conversions are performed, one using reference voltage of VREF and the other 0 V. The return value of this
function must be checked for the result.

2.7.2 Periodic
The periodic testing should start with a single call to Test_ADC12_Start_uX. Following that the ADC12 module will
perform a reference conversion each time it is used. The reference voltage is rotated between 0 V, VREF/2 and VREF.
The result of these reference conversions must be checked periodically using a call to Test_ADC12_CheckResult_uX.

2.8 Temperature
When testing the MCU temperature, it is important to remember that the ADC12 module unit 1 will be used. Therefore
if the user’s code also uses the ADC12 to monitor analog pins it is important that resource sharing of the ADC12
module is carefully considered.

The temperature sensor must be initialized before use with a call to Temperature_Init. This function must be passed the
allowable range of temperatures expressed in terms of the ADC12 output. See the Synergy S7G2 Hardware Manual for
details on how to calculate/find by experiment these values.

/*Temperature Sensor*/
Temperature_Init(TEMPERATURE_ADC_MIN,
 TEMPERATURE_ADC_MAX,
 Temperature_Test_Failure);

2.8.1 Power-Up
Temperature test procedure at power-up will be the same as explained for the periodic tests.

2.8.2 Periodic
Periodically the use of the ADC12 module must be taken over by the temperature sensor. To make a temperature
reading, the user calls this function:

/*Start ADC reading temperature sensor output.*/

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 43 of 52
Oct 10, 2016

Temperature_Start();

The result can then be checked against the allowable range supplied in the Temperature_Init function with a call to:

/*The registered Error callback will be called if there is an error. */
Temperature_CheckResult(TRUE);

To avoid the periodic test blocking the SW application for too long, it can be arranged so that each time the periodic test
is scheduled it actually checks the result of the temperature test started on the previous scheduled test and then start a
new conversion.

The user’s code can use functions Temperature_Is_Finished or Temperature_Wait_Finish to determine when the
application can resume using the ADC12 to read analog pins.

2.9 POE
The POE initialization and start-up is made using the following call:

POE_Init(POE_Event_Detected);

The user must carefully study the description of POE_Init and consult the Synergy S7G2 Hardware manual to
determine if the sample configuration of the POE meets the requirements of the user’s system. Depending upon the pins
used in the user’s system, the POE.c file may need to be adapted for the desired behavior.

In order to enable interrupt generation by the POE, both Interrupt Controller Unit (ICU) and Cortex-M4 Nested
Vectored Interrupt Controller (NVIC) must be configured to handle it.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number
corresponding to the POE group events (POEG_GROUP0 = 0x9A, POEG_GROUP1 = 0x9B, POEG_GROUP2 =
0x9C, POEG_GROUP3 = 0x9D). In particular, it is necessary to configure one IELSR register so that it is linked to the
aforementioned CAC events:

IELSRn.IELS = 0x9A; // (POEG_GROUP0)
IELSRn.IELS = 0x9B; // (POEG_GROUP1)
IELSRn.IELS = 0x9C; // (POEG_GROUP2)
IELSRn.IELS = 0x9D; // (POEG_GROUP3)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions must be
set:

NVIC_EnableIRQ(POEG0_EVENT_IRQn);
NVIC_EnableIRQ(POEG1_EVENT_IRQn);
NVIC_EnableIRQ(POEG2_EVENT_IRQn);
NVIC_EnableIRQ(POEG3_EVENT_IRQn);

Where POEG0_EVENT_IRQn, POEG1_EVENT_IRQn, POEG2_EVENT_IRQn and POEG3_EVENT_IRQn are the
IRQ numbers that must be defined by the user2.

3. Benchmarking
3.1 Environment
1. Development board: DK-S7G2M v3.0
2. Clocks: EXTAL = 24 MHz, ICLK = 240 MHz, PCLKB = 60 MHz, PCLKD = 120 MHz
3. MCU: R7FS7G27H2A01CBD
4. Tool chain: IAR Embedded Workbench for ARM , Functional Safety, v.7.40.6.9816
5. In-circuit debugger: ARM Debug + ETM connector and SEGGER J-link on board

Build option:

1. General option:
1. Target = Renesas R7FS7G27H

2 See Table 2-16 of “Cortex-M4 Devices: Generic User Guide”, first release, 16 December 2010 for more details about
IRQ numbers.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 44 of 52
Oct 10, 2016

2. Complier Settings:
1. Language = C
2. C-dialect = C-99
3. Language Conformance = Standard with IAR extension
4. Plain ‘char’ is: Unsigned
5. Floating-point semantics: Strict conformance
6. Optimization Level: None

3.2 Results
3.2.1 CPU
Table 12: CPU test results

Measurement Result
Non-CouplingTest
(both CPU and FPU)

Result
Coulping Test (both
CPU and FPU)

ROM usage (bytes) 27346 27502
RAM usage (bytes) 0 0
Stack usage (bytes) 0 0
Clock Cycle Count – CPU_TestAll 10094 1046
Time Measured (µs) @240 MHz -
CPU_TestAll

42 4.3

3.2.2 ROM
Table 13: Test results for CRC32C

Measurement Result
ROM usage (bytes) 170
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycle Count – CRC_Init 130
Time Measured (µs) @240 MHz – CRC_Init 0.5
Clock Cycle Count – CRC_Calculate (ROM overall, that is, 4 MB) 14680166
Time Measured (ms) @240 MHz - CRC_Calculate (4 MB) 61.17
Clock Cycle Count – CRC_Calculate (1kB) 14472
Time Measured (ms) @240 MHz - CRC_Calculate (1 kB) 60.3
Clock Cycle Count – CRC_Calculate (4kB) 57464
Time Measured (ms) @240 MHz - CRC_Calculate (4 kB) 239.4
Clock Cycle Count – CRC_Calculate (16kB) 229496
Time Measured (ms) @240 MHz - CRC_Calculate (16 kB) 956.2
Clock Cycle Count – CRC_Verify 78
Time Measured (us) @240 MHz - CRC_Verify 0.3

3.2.3 RAM
The tests were executed in 8- and 32-bit access width configurations. The 32-bit word limit was always used as it was
found that using a smaller limit did not improve performance.

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 45 of 52
Oct 10, 2016

(1) March C

Table 14: March C test results (8-bit access, 32-bit word limit)

Measurement Normal
Result

HW
(DOC+DMAC)
Result

ROM usage (bytes) 508 564
RAM usage (bytes) 0 0
Stack usage (bytes) 80 88
Stack usage Extra (bytes) 112 120

Clock cycle
count

Destructive
1024 bytes 1101136 1257046
500 bytes 537836 614080
100 bytes 107840 123292

Non-
destructive

1024 bytes 1123712 1275774
500 bytes 548884 623390
100 bytes 110082 125398

Extra
1024 bytes 2292432 2534864
500 bytes 1119720 1238476
100 bytes 224518 248876

Time
Measured
(ms) @
240 MHz

Destructive
1024 bytes 4.59 5.24
500 bytes 2.24 2.56
100 bytes 0.45 0.51

Non-
destructive

1024 bytes 4.68 5.32
500 bytes 2.29 2.6
100 bytes 0.46 0.52

Extra
1024 bytes 9.55 10.56
500 bytes 4.67 5.16
100 bytes 0.93 1.04

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 46 of 52
Oct 10, 2016

Table 15: March C test results (32-bit access, 32-bit word limit)

Measurement Normal
Result

HW
(DOC+DMAC)
Result

ROM usage (bytes) 544 608
RAM usage (bytes) 0 0
Stack usage (bytes) 80 88
Stack usage Extra (bytes) 112 120

Clock
cycle
count

Destructive
1024 bytes 891474 1075524
500 bytes 435464 525444
100 bytes 87364 105554

Non-
destructive

1024 bytes 897160 1080436
500 bytes 438266 528004
100 bytes 87964 106312

Extra
1024 bytes 1854682 2156480
500 bytes 905980 1053718
100 bytes 181782 211926

Time
Measured
(ms) @
240 MHz

Destructive
1024 bytes 3.71 4.48
500 bytes 1.81 2.19
100 bytes 0.36 0.44

Non-
destructive

1024 bytes 3.74 4.5
500 bytes 1.83 2.2
100 bytes 0.37 0.44

Extra
1024 bytes 0.77 8.99
500 bytes 3.78 4.39
100 bytes 0.76 0.88

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 47 of 52
Oct 10, 2016

(2) March X WOM

Table 16: March X WOM test results (8-bit access, 32-bit word limit)

Measurement Normal
Result

HW
(DOC+DMAC)
Result

ROM usage (bytes) 366 366
RAM usage (bytes) 0 0
Stack usage (bytes) 0 0
Stack usage Extra (bytes) 0 0

Clock
cycle
count

Destructive
1024 bytes 103726 138672
500 bytes 50808 67936
100 bytes 10406 13936

Non-
destructive

1024 bytes 126302 161248
500 bytes 61848 78980
100 bytes 12648 16174

Extra
1024 bytes 240276 312198
500 bytes 117660 152902
100 bytes 24058 31302

Time
Measured
(ms) @
240 MHz

Destructive
1024 bytes 0.43 0.58
500 bytes 0.21 0.28
100 bytes 0.04 0.06

Non-
destructive

1024 bytes 0.53 0.67
500 bytes 0.26 0.33
100 bytes 0.05 0.07

Extra
1024 bytes 1 1.3
500 bytes 0.49 0.64
100 bytes 0.1 0.13

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 48 of 52
Oct 10, 2016

Table 17: March X WOM test results (32-bit access, 32-bit word limit)

Measurement Normal
Result

HW
(DOC+DMAC)
Result

ROM usage (bytes) 424 452
RAM usage (bytes) 0 0
Stack usage (bytes) 0 0
Stack usage Extra (bytes) 0 0
Clock
cycle
count

Destructive 1024 bytes 24626 54458
500 bytes 12182 26818
100 bytes 2680 5724

Non-
destructive

1024 bytes 30312 60144
500 bytes 14982 29620
100 bytes 3282 6320

Extra 1024 bytes 57498 117660
500 bytes 28420 57924
100 bytes 6220 12324

Time
Measured
(ms) @
240 MHz

Destructive 1024 bytes 0.1 0.27
500 bytes 0.05 0.11
100 bytes 0.01 0.02

Non-
destructive

1024 bytes 0.13 0.25
500 bytes 0.06 0.12
100 bytes 0.01 0.03

Extra 1024 bytes 0.24 0.49
500 bytes 0.12 0.24
100 bytes 0.03 0.05

(3) Stack Test

Note: The results are the same regardless of the normal or HW implementation, because the stack test does not rely on
HW.

Table 18: Stack test results

Measurement Result
ROM usage (bytes) 356
RAM usage (bytes) 33
Stack usage (bytes) - RamTest_Stack_Main 12
Stack usage (bytes) - RamTest_Stack_Proc 12
Stack usage (bytes) - RamTest_Stacks 12
Clock Cycle Count – RamTest_Stack_Main
(only stack relocation)

160

Time Measured (us) @240 MHz -
RamTest_Stack_Main

0.67

Clock Cycle Count – RamTest_Stack_Proc
(only stack relocation)

160

Time Measured (us) @240 MHz -
RamTest_Stack_Proc

0.67

Clock Cycle Count – RamTest_Stacks (only
stack relocation)

194

Time Measured (us) @240 MHz -
RamTest_Stacks

0.81

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 49 of 52
Oct 10, 2016

(4) HW supporting functions

In this section it is reported the ROM and RAM resources needed to support the utilization of HW peripherals DOC and
DMAC.

Table 19: HW supporting function results

Measurement Result
ROM usage (bytes) 536
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycle Count –
RamTest_March_HW_Init

210

Time Measured (us) @240 MHz -
RamTest_March_HW_Init

0.8

Clock Cycle Count –
RamTest_March_HW_PreTest

1010

Time Measured (us) @240 MHz -
RamTest_March_HW_PreTest

4.2

Clock Cycle Count –
RamTest_March_HW_Is_Init

80

Time Measured (us) @240 MHz -
RamTest_March_HW_Is_Init

0.3

3.2.4 Clock
Table 20: Clock test results

Measurement Internal reference
Clock Result

External Reference
Clock Result

ROM usage (bytes) 628 1080
RAM usage (bytes) 4 4
Stack usage (bytes) 56 56
Clock Cycle Count 2856 1372
Time measured (us) @ 240 MHz 11.9 5.7

3.2.5 Independent Watchdog
Table 21: Independent Watchdog test results

Measurement Result
ROM usage (bytes) 124
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycles Count - IWDT_Init 86
Time measured (us) @ 240 MHz - IWDT_Init 0.3
Clock Cycles Count - IWDT_Kick 80
Time measured (us) @ 240 MHz - IWDT_Kick 0.3
Clock Cycles Count - IWDT_DidReset 96
Time measured (us) @ 240 MHz - IWDT_DidReset 0.4

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 50 of 52
Oct 10, 2016

3.2.6 Voltage
Table 22: Voltage Monitoring test results

Measurement Result
ROM usage (bytes) 188
RAM usage (bytes) 0
Stack usage (bytes) 0
Clock Cycles Count 30504
Time measured (us) @ 240 MHz 127

3.2.7 ADC12
Table 23: 12-bit ADC Converter test results

Measurement Result
ROM usage (bytes) 908
RAM usage (bytes) 8
Stack usage (bytes) 0
Clock Cycles Count - Test_ADC12_Init_uX 100
Time measured (us) @ 240 MHz - Test_ADC12_Init_uX 0.4
Clock Cycles Count - Test_ADC12_Wait_uX 702
Time measured (us) @ 240 MHz - Test_ADC12_Wait_uX 2.9
Clock Cycles Count - Test_ADC12_Start_uX 122
Time measured (us) @ 240 MHz- Test_ADC12_Start_uX 0.5
Clock Cycles Count (clock cycles) - Test_ADC12_CheckResult_uX 176
Time measured (us) @ 240 MHz - Test_ADC12_CheckResult_uX 0.7

3.2.8 Temperature
Table 24: Temperature sensor test results

Measurement Result
ROM usage (bytes) 344
RAM usage (bytes) 8
Stack usage (bytes) 0
Clock Cycles Count - Temperature_Init 160
Time measured (us) @ 240 MHz - Temperature_Init 0.6
Clock Cycles Count - Temperature_Start 43484
Time measured (us) @ 240 MHz - Temperature_Start 181
Clock Cycles Count - Temperature_CheckResult 206
Time measured (us) @ 240 MHz - Temperature_CheckResult 0.8

3.2.9 Port Output Enable
Table 25: Port Output Enable test results

Measurement Result
ROM usage (bytes) 1556
RAM usage (bytes) 4
Stack usage (bytes) 0
Clock Cycles Count - GPT_init 1434
Time measured (us) @ 240 MHz - GPT_init 5.9
Clock Cycles Count - POE_Init 580
Time measured (us) @ 240 MHz - POE_Init 2.4

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 51 of 52
Oct 10, 2016

4. Additional Information
4.1 Reading an IO Pin State
The actual value of an IO pin can always be read by reading the corresponding pin’s Port mn Pin Function Select
Register (PmnPFS) (see section 20.2.5 of Synergy S7 HW Manual for details):

Figure 2: PmnPFS Register

Renesas Synergy™ S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU

R01AN3492EU0101 Rev.1.01 Page 52 of 52
Oct 10, 2016

Website and Support
Support: https://synergygallery.renesas.com/support

Technical Contact Details:

• America: https://renesas.zendesk.com/anonymous_requests/new
• Europe: https://www.renesas.com/en-eu/support/contact.html
• Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Rev. Date
Description
Page Summary

1.00 Sep 29, 2016 - Initial version
1.01 Oct 10, 2016 All Minor formatting. Clarified that target device is S7G2 Group

microcontrollers rather than all S7 Series microcontrollers.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device
operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs.
Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using
insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded.
The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar
precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate
and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset
signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset
process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of
such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product
documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS
products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic
noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal
during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external
resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while
program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the
area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering
noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the
area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not
access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will
not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a
different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the
ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated
noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Tests
	1.1 CPU
	1.1.1 Software API

	1.2 ROM
	1.2.1 CRC32C Algorithm
	1.2.2 CRC Software API

	1.3 RAM
	1.3.1 Algorithms
	(1) March C
	(2) March X
	(3) March X (Word-Oriented Memory version)

	1.3.2 Software API
	(1) March C API
	(2) March X WOM API
	(3) March C and March X WOM HW Implementation specific API.
	(4) RAM Test Stack API

	1.4 Clock
	1.5 Independent Watchdog Timer
	1.6 Voltage
	1.7 ADC12
	1.8 Temperature
	1.9 Port Output Enable (POE)

	2. Example Usage
	2.1 CPU
	2.1.1 Power-Up
	2.1.2 Periodic

	2.2 ROM
	2.2.1 Power-Up
	2.2.2 Periodic

	2.3 RAM
	2.3.1 Power-Up
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer
	2.6 Voltage
	2.7 ADC12
	2.7.1 Power-Up
	2.7.2 Periodic

	2.8 Temperature
	2.8.1 Power-Up
	2.8.2 Periodic

	2.9 POE

	3. Benchmarking
	3.1 Environment
	3.2 Results
	3.2.1 CPU
	3.2.2 ROM
	3.2.3 RAM
	(1) March C
	(2) March X WOM
	(3) Stack Test
	(4) HW supporting functions

	3.2.4 Clock
	3.2.5 Independent Watchdog
	3.2.6 Voltage
	3.2.7 ADC12
	3.2.8 Temperature
	3.2.9 Port Output Enable

	4. Additional Information
	4.1 Reading an IO Pin State

	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

