

Renesas Synergy[™] S7G2 Group

R01AN3492EU0101 Rev.1.01 IEC60730 Self-Test Code for Synergy S7G2 MCU Oct 10, 2016

Introduction

Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers/Stoves will tend to fall under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance with IEC60730 class B safety standards. These routines have been certified by VDE Test and Certification Institute GmbH and a copy of the Test Certificate is available in the download package for this Application Note (See Note 1 below).

Although these routines were developed using IEC60730 compliance as a basis, they can be implemented in any system for self testing of Renesas MCUs.

The software routines provided are to be used after reset and also during the program execution. The end user has the flexibility of how to integrate these routines into their overall system design but this document and the accompanying sample code provide an example of how to do this.

It is worth noting that the definition of error handling routines is demanded to the user as well as interrupt handler routines. Since errors that are covered by the software routines are very critical (e.g. PC failure) and the correct SW functionality cannot be assured it is strongly recommended to the user to not only rely on SW error handling, but to also use HW safety mechanisms, e.g. the utilization of the Independent Watchdog (iWDT).

Note 1. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm IEC 60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm contains just a single sheet that jumps to the IEC 60730-1 for definitions, information and applicable paragraphs.

Target Device

Renesas Synergy S7G2 Group MCU

Contents

1. T	ests3
1.1	CPU
1.2	ROM11
1.3	RAM15
1.4	Clock
1.5	Independent Watchdog Timer26
1.6	Voltage
1.7	ADC12
1.8	Temperature
1.9	Port Output Enable (POE)
2. E	xample Usage
2.1	CPU
2.2	ROM
2.3	RAM
2.4	Clock
2.5	Independent Watchdog Timer40
2.6	Voltage42
2.7	ADC12
2.8	Temperature42
2.9	POE
3. E	Senchmarking43
3.1	Environment43
3.2	Results
4. <i>A</i>	Additional Information51
4.1	Reading an IO Pin State
Webs	ite and Support52
Revis	ion History1
	ral Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

1. Tests

1.1 CPU

This section describes CPU tests routines. Reference IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.1 CPU.

The following CPU registers are tested: R0->R12. MSP, PSP, LR, APSR, BASEPRI and CONTROL. In addition, these FPU registers are also tested: S0->S31. CPACR, FPCCR, FPCAR, FPSCR and FPDSCR.

The source file cpu_test.c provides implementation of the CPU test using C language and relies on assembly language function to access the registers (that is, CPU_Test_Control). File cpu_test_coupling.c is also required to use the coupling test version of the General Purpose Registers. Coupling test relies on assembly language functions:

- TestGPRsCouplingStart_A
- TestGPRsCouplingR1_R3_A
- TestGPRsCouplingR4_R6_A
- TestGPRsCouplingR7_R9_A
- TestGPRsCouplingR10_R12_A
- TestGPRsCouplingR0_A
- TestGPRsCouplingStart_B
- TestGPRsCouplingR1_R3_B
- TestGPRsCouplingR4_R6_B
- TestGPRsCouplingR7 R9 B
- TestGPRsCouplingR10_R12_B
- TestGPRsCouplingR0 B
- TestGPRsCouplingEnd

Alternatively, CPU_Test_General_Low, CPU_Test_General_High assembly language functions are used to test GPRS registers.

The cpu_test.c source file relies also on FPU_Control assembly language function to access the FPU control registers. File fpu_test_coupling.c is also required if using the coupling test version of the FPU extension registers:

- TestFPUCouplingStart_A
- TestFPUCouplingS0_S3_A
- TestFPUCouplingS4_S7_A
- TestFPUCouplingS8_S11_A
- TestFPUCouplingS12_S15_A
- TestFPUCouplingS16_S19_A
- TestFPUCouplingS20 S23 A
- TestFPUCouplingS24_S27_A
- TestFPUCouplingS28_S31_A
- TestFPUCouplingStart B
- TestFPUCouplingS0_S3_B
- TestFPUCouplingS4_S7_B
- TestFPUCouplingS8 S11 B
- TestFPUCouplingS12_S11_B
 TestFPUCouplingS12_S15_B
- TestFPUCouplingS12_S15_B
- TestFPUCouplingS16_S19_B
- TestFPUCouplingS20_S23_B
- TestFPUCouplingS24_S27_B
- TestFPUCouplingS28_S31_B
- TestFPUCouplingEnd

Alternatively, FPU_Exten assembly language function is used to test FPU extension registers

The source file cpu_test.h provides the interface to the CPU tests. The file S7G2_registers.h includes definitions of S7G2 registers.

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return values to indicate the result of a test. Instead the user of these tests must provide an error handling function with the following declaration:

xtern void CPU_Test_ErrorHandler(void);

The CPU test will jump to this function if an error is detected. This function must not return.

All the test functions follow the rules of register preservation following a C function call. Therefore the user can call these functions like any normal C function without any additional responsibilities for saving register values beforehand.

1.1.1 Software API

Table 1 Software API Source files

cpu_test.h, fpu_test.h cpu_test_coupling.c, cpu_test.c, fpu_test_couplingStart_A.asm, TestGPRsCouplingR1_R3_A.asm, TestGPRsCouplingR4_R6_A.asm, TestGPRsCouplingR7_R9_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S23_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_A.asm, TestFPUCouplingS4_S11_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S13_B.asm, TestFPUCouplingS4_S	File name
<pre>fpu_test_coupling.c TestGPRsCouplingStart_A.asm, TestGPRsCouplingR1_R3_A.asm, TestGPRsCouplingR4_R6_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingS2_S1_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S31_B.asm, TestFPUCouplingS</pre>	cpu_test.h, fpu_test.h
TestGPRsCouplingStart_A.asm, TestGPRsCouplingR1_R3_A.asm, TestGPRsCouplingR4_R6_A.asm, TestGPRsCouplingR7_R9_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S31_B.asm, TestFPUCouplingS24_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	<pre>cpu_test_coupling.c, cpu_test.c,</pre>
TestGPRsCouplingR1_R3_A.asm, TestGPRsCouplingR4_R6_A.asm, TestGPRsCouplingR7_R9_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Contro1.asm, CPU_Test_General_Low.asm, CPU_Test_General_Low.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_A.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	<pre>fpu_test_coupling.c</pre>
TestGPRsCouplingR4_R6_A.asm, TestGPRsCouplingR7_R9_A.asm, TestGPRsCouplingR0_R12_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR0_R12_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS8_S11_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS4_S1_A.asm, TestFPUCouplingS4_S1_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm,	TestGPRsCouplingStart_A.asm,
TestGPRsCouplingR7_R9_A.asm, TestGPRsCouplingR10_R12_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S1_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm,	TestGPRsCouplingR1_R3_A.asm,
TestGPRsCouplingR10_R12_A.asm, TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, CPU_Test_Contro1.asm, CPU_Test_Contro1.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_contro1.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S31_A.asm, TestFPUCouplingS24_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm,	
TestGPRsCouplingR0_A.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS26_S23_A.asm, TestFPUCouplingS26_S23_A.asm, TestFPUCouplingS26_S23_A.asm, TestFPUCouplingS26_S23_A.asm, TestFPUCouplingS26_S31_A.asm, TestFPUCouplingS26_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	TestGPRsCouplingR7_R9_A.asm,
TestGPRsCouplingStart_B.asm, TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS26_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	TestGPRsCouplingR10_R12_A.asm,
TestGPRsCouplingR1_R3_B.asm, TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	TestGPRsCouplingR0_A.asm,
TestGPRsCouplingR4_R6_B.asm, TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR10_R12_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	
TestGPRsCouplingR7_R9_B.asm, TestGPRsCouplingR10_R12_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm,	
TestGPRsCouplingR10_R12_B.asm, TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S23_B.asm, TestFPUCouplingS26_S31_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	
TestGPRsCouplingR0_B.asm, TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	
TestGPRsCouplingEnd.asm, CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
CPU_Test_Control.asm, CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
CPU_Test_General_Low.asm, CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm,	
CPU_Test_General_High.asm, fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
<pre>fpu_control.asm, TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,</pre>	
TestFPUCouplingStart_A.asm, TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS8_S11_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS0_S3_A.asm, TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS8_S11_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS26_S3_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS4_S7_A.asm, TestFPUCouplingS8_S11_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS8_S11_A.asm, TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingS4_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS12_S15_A.asm, TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	TestFPUCouplingS4_S7_A.asm,
TestFPUCouplingS16_S19_A.asm, TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS20_S23_A.asm, TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS24_S27_A.asm, TestFPUCouplingS28_S31_A.asm, TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS28_S31_A.asm, TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingStart_B.asm, TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS0_S3_B.asm, TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS4_S7_B.asm, TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS8_S11_B.asm, TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS12_S15_B.asm, TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	TestEPUCounlingS8 S11 B asm
TestFPUCouplingS16_S19_B.asm, TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS20_S23_B.asm, TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS24_S27_B.asm, TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	
TestFPUCouplingS28_S31_B.asm, TestFPUCouplingEnd.asm,	TestFPUCouplingS24 S27 B.asm.
TestFPUCouplingEnd.asm,	TestFPUCouplingS28 S31 B.asm.
fpu_exten.asm	

Syntax

void CPU_TestAll(void)

Description

Runs through all the tests detailed below in the following order:

1. If using Coupling GPR Tests (*1. see below): CPU_Test_GPRsCouplingPartA

CPU_Test_GPRsCouplingPartB

If not using Coupling GPR test:

CPU_Test_General_Low

CPU_Test_General_High

- 2. CPU_Test_Control
- 3. CPU_Test_PC
- 4. If using Coupling FPU extension registers Tests (*2. see below): FPU_Test_FPUCouplingPartA

FPU_Test_FPUCouplingPartB

If not using Coupling GPR test:

FPU_Exten

5. FPU_Control

It is the calling function's responsibility to ensure that the processor is in Privileged Mode. If this function is called in unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged mode. In addition, since in CPU_Test_Control function tests stack pointer registers (that is, MSP and PSP), then it is necessary to disable stack pointer monitoring (MSPMPUCTL.ENABLE = 0. PSPMPUCTL.ENABLE = 0) before running CPU_TestAll function and restore its setting after function return.

It is also the calling function's responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

See the individual tests for a full description.

*1. A **#define** USE_TEST_GPRS_COUPLING in the code is used to select which functions will be used to test the General Purpose Registers.

*2 A #define USE_TEST_FPU_COUPLING in the code is used to select which functions will be used to test the FPU extension registers.

Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
NONE	N/A

Syntax

void CPU_Test_GPRsCouplingPartA(void)

Description

Tests general purpose registers R0 to R12. Coupling faults between the registers are detected.

This is Part A of a complete GPR test. Use function CPU_Test_GPRsCouplingPartB to complete the test.

It is the calling function's responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
NONE	N/A

Syntax			
<pre>void CPU_Test_GPRsCoup</pre>	plingPartB(void)		
Description			
Tests general purpose regis	sters R0 to R12. Coupling faults between the registers are detected.		
This is Part B of a complet	e GPR test. Use function CPU_Test_GPRsCouplingPartA to complete the test.		
It is the calling function's r	It is the calling function's responsibility to ensure no interrupts occur during this test.		
If an error is detected then	If an error is detected then external function CPU_Test_ErrorHandler will be called.		
Input Parameters			
NONE	N/A		
Output Parameters	Output Parameters		
NONE	N/A		
Return Values	Return Values		
NONE	N/A		

Renesas Synergy[™] S7G2 Group IEC60730 Self-Test Code for Synergy S7G2 MCU **Syntax** void CPU_Test_General_Low(void) Description Test registers R1. R2. R3. R4. R5. R6 and R7. These are the general purpose registers. Registers are tested in pairs. For each pair of registers: 1. Write h'55555555 to both. 2. Read both and check they are equal. 3. Write h'AAAAAAA to both. 4. Read both and check they are equal. It is the calling function's responsibility to disable exception during this test. If an error is detected then external function CPU_Test_ErrorHandler will be called. **Input Parameters** N/A NONE **Output Parameters** N/A NONE **Return Values** N/A NONE **Syntax** void CPU_Test_General_High(void) Description Test registers R8. R9. R10. R11 and R12. These are the general purpose registers. Registers are tested in pairs. For each pair of registers: 1. Write h'55555555 to both. 2. Read both and check they are equal. 3. Write h'AAAAAAA to both. 4. Read both and check they are equal. It is the calling function's responsibility to disable exceptions during this test. If an error is detected then external function CPU_Test_ErrorHandler will be called. **Input Parameters** N/A NONE **Output Parameters** N/A NONE **Return Values**

NONE

N/A

Syntax			
<pre>void CPU_Test_Control(</pre>	(void)		
Description			
Tests control registers PSP	, MSP, LR, APSR, BASEPRI, CONTROL.		
This test assumes registers	R1 to R4 are working.		
Generally the test	procedure for each register is as follows:		
For each	register:		
	1. Write h'55555555 to.		
	2. Read back and check value equals h'55555555.		
	3. Write h'AAAAAAA to.		
	4. Read back and check value equals h'AAAAAAAA.		
Note however that there are some cases where restrictions on specific bits within a register do not allow this procedure. For these cases other test values have been chosen.			
It is the calling function's responsibility to ensure that the processor is in Privileged Mode. If this function is called in Unprivileged Mode the test will fail as some of the register bits are not accessible in Unprivileged Mode.			
It is also the calling function's responsibility to disable exceptions during this test.			
NOTE: FAULTMASK and PRIMASK are not tested since this test requires exceptions be disabled. Thus they are not activated during the test modifying FAULTMASK and PRIMASK.			
If an error is detected then external function CPU_Test_ErrorHandler will be called.			
Input Parameters			
NONE	N/A		
Output Parameters			
NONE	NONE N/A		
Return Values			
NONE	N/A		

Syntax

void CPU_Test_PC (void)

Description

This function provides the Program Counter (PC) register test.

This provides a confidence check that the PC is working.

It tests that the PC is working by calling a function that is located in its own section so that it can be located away from this function, so that when it is called more of the PC Register bits are required for it to work.

So that this function can be sure that the function has actually been executed it returns the inverse of the supplied parameter. This return value is checked for correctness.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
NONE	N/A

Syntax	Syntax	
<pre>void FPU_Test_FPUCoupl</pre>	ingPartA (void)	
Description		
Tests FPU extension registe	ers S0 to S31. Coupling faults between the registers are detected.	
This is Part A of a complete test.	e FPU extension register test, use function FPU_Test_FPUCouplingPartB to complete the	
It is the calling function's r	It is the calling function's responsibility to ensure no interrupts occur during this test.	
If an error is detected then	external function CPU_Test_ErrorHandler will be called.	
Input Parameters		
NONE	N/A	
Output Parameters		
NONE	N/A	
Return Values		
NONE	N/A	

Syntax

void FPU_Test_FPUCouplingPartB(void)

Description

Tests FPU extension registers S0 to S31. Coupling faults between the registers are detected.

This is Part B of a complete FPU extension register test, use function FPU_Test_FPUCouplingPartA to complete the test.

It is the calling function's responsibility to ensure no interrupts occur during this test.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
NONE	N/A

Syntax		
<pre>void FPU_Exten(void)</pre>		
Description		
Test FPU extension registe	rs S0 to S31. Registers are tested in pairs.	
For each pair of re	egisters:	
1. Write	h'55555555 to both.	
2. Read t	2. Read both and check they are equal.	
3. Write	3. Write h'AAAAAAAA to both.	
4. Read t	4. Read both and check they are equal.	
It is the calling function's r	It is the calling function's responsibility to disable exception during this test.	
If an error is detected then	external function CPU_Test_ErrorHandler will be called.	
Input Parameters		
NONE	N/A	
Output Parameters		
NONE	N/A	
Return Values		
NONE	N/A	

Syntax	
void FPU _Contro	pl(void)
Description	
Tests FPU control	registers CPACR, FPCCR, FPCAR, FPSCR and FPDSCR.
This test assumes r	egisters R1 to R10 are working.
Generally	the test procedure for each register is as follows:
F	or each register:
	1. Write h'55555555 to.
	2. Read back and check value equals h'55555555.
3. Write h'AAAAAAAA to.	
	4. Read back and check value equals h'AAAAAAAA.
	there are some cases where restrictions on specific bits within a register do not allow this procedure. er test values have been chosen.
	action's responsibility to ensure that the processor is in Privileged Mode. If this function is called in the test will fail as some of the register bits are not accessible in Unprivileged Mode.
It is also the calling	function's responsibility to disable exceptions during this test.
If an error is detect	ed then external function CPU_Test_ErrorHandler will be called.
Input Parameters	
NONE	N/A
Output Parameter	'S
IONE N/A	
Return Values	
NONE	N/A

1.2 ROM

This section describes the ROM/Flash memory test using CRC routines. Reference IEC 60730: 1999+A1:2003 Annex H – H2.19.4.1 CRC – Single Word.

CRC is a fault/error control technique which generates a single word or checksum to represent the contents of memory. A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction) of the message bit stream, by a predefined (short) bit stream of length n + 1. which represents the coefficients of a polynomial with degree n. Before the division, n zeros are appended to the message stream. CRCs are popular because they are simple to implement in binary hardware and are easy to analyses mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared with the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC values produced by other CRC generators. This proves difficult because there are a number of factors that can change the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits of the actual CRC value. This complication has arisen because big and little endian systems were developed to work together that employed serial data transfers where bit order became important. This implementation will produce the same result as the IAR for ARM toolchain does using the Checksum option. Therefore if you are using the IAR for ARM Toolchain to automatically insert a reference CRC into the ROM the value can be compared directly with the one calculated.

1.2.1 CRC32C Algorithm

The Synergy S7G2 includes a CRC module that includes support for the CRC32C. This software set the CRC module to produce a 32-bit CRC32C:

- Polynomial = $0x1EDC6F41 (x^{32} + x^{28} + x^{27} + x^{26} + x^{25} + x^{23} + x^{22} + x^{20} + x^{19} + x^{18} + x^{14} + x^{13} + x^{11} + x^{10} + x^9 + x^8 + x^6 + 1)$
- Width = 32 bits
- Initial value = 0xFFFFFFFF
- XOR with h'FFFFFFF is performed on the output CRC

1.2.2 CRC Software API

All software is written in ANSI C.

The file S7G2_registers.h includes definitions of S7G2 registers.

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a value stored in ROM.

Table 2: CRC Software API Source files

File name	
<pre>crc.h, crc_verify.h</pre>	
<pre>crc.c, CRC_Verify.c</pre>	

These following functions are implemented in files CRC_Verify.h and CRC_Verify.c:

Syntax				
<pre>bool CRC_Verify(const</pre>	<pre>bool CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)</pre>			
Description				
This function compares a new CRC value with a reference CRC by supplying address where reference CRC is stored.				
Input Parameters				
uint32_t ui32_NewCRCVa	lue	Value of calculated new CRC value.		
uint32_t ui32_AddrRefCRC		Address where 32 bit reference CRC value is stored.		
Output Parameters				
NONE	N/A			
Return Values				
bool	True = Passed, false = Failed			

These following functions are implemented in files crc.h and crc.c:

Syntax			
void CRC_Init(void)			
Description			
Initializes the CRC module	e. This functi	ion must be called before any of the other CRC functions can be.	
Input Parameters			
NONE		N/A	
Output Parameters			
NONE	NONE N/A		
Return Values			
NONE N/A			
Syntax			
uint32_t CRC_Calculate(uint32_t* pui32_Data, uint32_t ui32_Length)			
Description			
This function calculates the CRC of a single specified memory area.			
Input Parameters			
uint32_t* pui32_Data		Pointer to start of memory to be tested.	
uint32_t ui32_Length Length of the data in long words.			
Output Parameters			
NONE	N/A		
Return Values			
Uint32_t	The 32-bit calculated CRC32C value.		

The following functions are used when the memory area cannot simply be specified by a start address and length. They provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too long in a single function call.

Syntax			
void CRC_Start(void)			
Description			
Prepares the module for sta	arting to rece	eive data. Call this once prior to using function CRC_AddRange.	
Input Parameters			
NONE		N/A	
Output Parameters			
NONE	ONE N/A		
Return Values			
None	N/A		
0 4			
Syntax			
<pre>void CRC_AddRange(uint32_t* pui32_Data, uint32_t ui32_Length)</pre>			
Description			
Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one address range. Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result to get the CRC value.			
Input Parameters			
uint32_t* pui32_Data		Pointer to start of memory range to be tested.	
uint32_t ui32_Length		Length of the data in long words.	
Output Parameters			
NONE	N/A		
Return Values			

None

N/A

Syntax				
<pre>uint32_t CRC_Result(vo</pre>	uint32_t CRC_Result(void)			
Description				
Calculates the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was called.				
Input Parameters				
NONE		N/A		
Output Parameters				
NONE	N/A			
Return Values				
uint32_t	The calculated CRC32C value.			

1.3 RAM

March tests are a family of tests that are well recognized as an effective way of testing RAM.

A March test consists of a finite sequence of March elements. A March element is a finite sequence of operations applied to every cell in the memory array before proceeding to the next cell.

In general, the more March elements the algorithm consists of, the better its fault coverage will be but at the expense of a slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values) but the supplied test functions provide a non-destructive option so that memory contents can be preserved. This is achieved by copying the memory to a supplied buffer before running the actual algorithm and then restoring the memory from the buffer at the end of the test. The API includes an option for automatically testing the buffer as well as the RAM test area.

The area of RAM being tested cannot be used for anything else while it is being tested. This makes the testing of RAM used for the stack particularly difficult. To help with this problem the API includes functions which can be used for testing the stack.

The following section introduces the specific March Tests. Following that is the specification of the software APIs.

1.3.1 Algorithms

(1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the following faults:

- 1. Stuck At Faults (SAF)
 - The logic value of a cell or a line is always 0 or 1.
- 2. Transition Faults (TF)
 A cell or a line that fails to undergo a 0→1 or a 1→0 transition.
- 3. Coupling Faults (CF)
 - A write operation to one cell changes the content of a second cell.
- 4. Address Decoder Faults (AF). Any fault that affects the address decoder:
 With a certain address, no cell will be accessed.
 - A certain cell is never accessed.
 - With a certain address, multiple cells are accessed simultaneously.
 - A certain cell can be accessed by multiple addresses.
- These are the 6 March elements:
- 1. Write all zeros to array.

- 2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.
- 3. Starting at lowest address, read ones, write zeros, increment up array bit by bit.
- 4. Starting at highest address, read zeros, write ones, decrement down array bit by bit.
- 5. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
- 6. Read all zeros from array.

(2) March X

Note: This algorithm has not been implemented for the Synergy and is only presented here for information as it relates to the March X WOM version below.

The March X algorithm consists of 4 March elements with a total of 6 operations. It detects the following faults:

- 1. Stuck At Faults (SAF)
- 2. Transition Faults (TF)
- 3. Inversion Coupling Faults (Cfin)
- 4. Address Decoder Faults (AF)

These are the 4 March elements:

- 1. Write all zeros to array.
- 2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.
- 3. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
- 4. Read all zeros from array.

(3) March X (Word-Oriented Memory version)

The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm in two stages. First, the standard March X is converted from using a single-bit data pattern to using a data pattern equal to the memory access width. At this stage the test is primarily detecting inter-word faults including Address Decoder faults. The second stage is to add an additional two March elements. The first uses a data pattern of alternating high/low bits then the second uses the inverse. The addition of these elements is to detect intra-word coupling faults.

These are the 6 March elements:

- 1. Write all zeros to array.
- 2. Starting at lowest address, read zeros, write ones, increment up array word by word.
- 3. Starting at highest address, read ones, write zeros, decrement down word by word.
- 4. Starting at lowest address, read zeros, write h'AAs, increment up array word by word.
- 5. Starting at highest address, read h'AAs, write h'55s, decrement down word by word.
- 6. Read all h'55s from array.

1.3.2 Software API

Two implementations of the RAM tests are available:

- 1) Standard implementation.
- 2) Hardware (HW) implementation. This version uses the Data Operation Circuit (DOC) and optionally a DMAC channel to help perform the tests.

Both implementations share the same core API but the 'HW' implementation has some additional functions. Please see details in section peter

(1) March C API

This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the following:

- 1. RAMTEST_MARCH_C_ACCESS_SIZE_8BIT
- 2. RAMTEST_MARCH_C_ACCESS_SIZE_16BIT
- 3. RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed the test up as well as reducing stack and code size. This is done by limiting the size of the variable used to hold the number of 'words' that the test area contains. The 'word' size is the selected access width.

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the following:

- 1.
- RAMTEST_MARCH_C_MAX_WORDS_8BIT RAMTEST_MARCH_C_MAX_WORDS_16BIT RAMTEST_MARCH_C_MAX_WORDS_32BIT 2.
- 3.

(Max words in test area is 0xFF) (Max words in test area is 0xFFFF) (Max words in test area is 0xFFFFFFFF)

Table 3: Source files:

Standard	HW
ramtest_march_c.h,	ramtest_march_c.h, ramtest_march_HW.h
<pre>ramtest_march_c.c,</pre>	<pre>ramtest_march_c_HW.c, ramtest_march_HW.c.</pre>

The source is written in ANSI C and uses S7G2_registers.h to access peripheral registers.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested between words it is important to use the functions to test a data range bigger than one word.

Declaration				
bool RamTest_Marcl	bool RamTest_March_C(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr, void* p_RAMSafe);			
Description				
RAM memory test us	ing March C (Goor 1991) algorithm.			
Input Parameters				
uint32_t ui32_StartAddr	The address of the first word of RAM to be tested. This must be aligned with the selected memory access width.			
uint32_t ui32_EndAddr	The address of the last word of RAM to be tested. This must be aligned with the selected memory access width and be a value greater or equal to ui32_StartAddr.			
void* p_RAMSafe	For a destructive memory test, set to NULL. For a non-destructive memory test, set to the start of a buffer that is large enough to copy the contents of the test area into it and that is aligned with the selected memory access width.			
Output Parameters				
NONE	N/A			
Return Values				
bool True = Test passed. False = Test or parameter check failed.				

Declaration

bool RamTest March C Extra(uint32 t ui32 StartAddr, uint32_t ui32_EndAddr, void* p RAMSafe);

Description

Non Destructive RAM memory test using March C (Goor 1991) algorithm.

This function differs from the RamTest_March_C function by testing the 'RAMSafe' buffer before using it. If the test of the 'RAMSafe' buffer fails then the test will be aborted and the function will return false.

Input Parameters		
uint32_t ui32_StartAddr	The address of the first word of RAM to be tested. This must be aligned with the selected memory access width.	
uint32_t ui32_EndAddr	The address of the last word of RAM to be tested. This must be aligned with the selected memory access width and be a value greater or equal to ui32_StartAddr.	
void* p_RAMSafe	Set to the start of a buffer that is large enough to copy the contents of the test area into it and that is aligned with the selected memory access width.	
Output Parameters		
NONE	N/A	
Return Values		
bool	True = Test passed. False = Test or parameter check failed.	

March X WOM API (2)

This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST MARCH X WOM ACCESS SIZE in the header file to be one of the following:

- RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_8BIT •
- RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_16BIT •
- RAMTEST MARCH X WOM ACCESS SIZE 32BIT •

In order to speed up the run time of the test you can choose to limit the maximum size of RAM that can be tested with a single function call. This is done by limiting the size of the variable used to hold the number of 'words' that the test area contains. The 'word' size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_ X_WOM_MAX_WORDS in the header file to be one of the following:

RAMTEST MARCH X WOM MAX WORDS 8BIT •

(Max words in test area is 0xFF)

- (Max words in test area is 0xFFFF)
- RAMTEST_MARCH_ X_WOM_MAX_WORDS_16BIT RAMTEST_MARCH_ X_WOM_MAX_WORDS_32BIT
- (Max words in test area is 0xFFFFFFFF)

Table 4: Source files:

•

Standard	HW
ramtest_march_x_wom.h	<pre>ramtest_march_HW.h, ramtest_march_x_wom.h</pre>
<pre>ramtest_march_x_wom.c</pre>	<pre>ramtest_march_HW.c, ramtest_march_x_wom_HW.c</pre>

The source is written in ANSI C and uses S7G2 registers.h to access peripheral registers.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested between words it is important to use the functions to test a data range bigger than one word.

Declaration

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters

•		
uint32_t ui32_StartAddr	Address of the first word of RAM to be tested. This must be aligned with the selected memory access width.	
uint32_t ui32_EndAddr	Address of the last word of RAM to be tested. This must be aligned with the selected memory access width and be a value greater or equal to ui32_StartAddr.	
void* p_RAMSafe	For a destructive memory test set to NULL. For a non-destructive memory test, set to the start of a buffer that is large enough to copy the contents of the test area into it and that is aligned with the selected memory access width.	
Output Parameters		
NONE	N/A	
Return Values		
bool	True = Test passed. False = Test or parameter check failed.	

Declaration

Description

Non-Destructive RAM memory test based on March X algorithm converted for WOM. This function differs from the RamTest_March_X_WOM function by testing the 'RAMSafe' buffer before using it. If the test of the 'RAMSafe' buffer fails then the test will be aborted and the function will return false.

Input Parameters		
uint32_t ui32_StartAddr	The address of the first word of RAM to be tested. This must be aligned with the selected memory access width.	
uint32_t ui32_EndAddr	The address of the last word of RAM to be tested. This must be aligned with the selected memory access width and be a value greater or equal to ui32_StartAddr.	
void* p_RAMSafe	Set to the start of a buffer that is large enough to copy the contents of the test area into it and that is aligned with the selected memory access width.	
Output Parameters		
NONE	N/A	
Return Values		
bool	True = Test passed. False = Test or parameter check failed.	

(3) March C and March X WOM HW Implementation specific API.

The 'HW' implementations of the March C and the March X WOM tests use the Data Operation Circuit (DOC) and optionally a DMAC channel to help perform the tests. The DMAC is used to initialize the RAM under test and the DOC is used to compare values read back from RAM with expected values.

It is the user's responsibility to ensure that nothing else accesses the DOC or chosen DMAC channel during the RAM tests.

The optional use of the DMAC is controlled using the following #defines in file ramtest_march_HW.h:

#define	Meaning if #defined
'RAMTEST_USE_DMAC'	The DMAC will be initialized.
'DMAC_CHANNEL'	Select the DMAC channel to use. See file for details.

If 'RAMTEST_USE_DMAC' has been defined than a specific HW test may enable use of the DMAC. This is done using the following:

#define	File where defined
'RAMTEST_MARCH_C_USE_DMAC'	ramtest_march_c_HW.c
'RAMTEST_MARCH_X_WOM_USE_DMAC'	ramtest_march_x_wom_HW.c

Declaration

void RamTest_March_HW_Init(void);

Description

Initialize the hardware (DOC and optionally DMAC) used by the 'HW' implementations of the RAM tests.

The DMAC is only used if 'RAMTEST_USE_DMAC' is defined.

Call this function before using any other RAM Test function that uses a HW implementation.

Input Parameters		
NONE	N/A	
Output Parameters		
NONE	N/A	
Return Values		
void	N/A	

Declaration	
bool RamTest_March_HW_	PreTest(void);
Description	
This may be used to check	if the hardware (DOC and DMAC) are functioning correctly before using.
A quick functional test of t	he DOC and (if RAMTEST_USE_DMAC is #defined) the DMAC is performed.
Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
bool	True = Test passed. False = Test failed.

Declaration

bool RamTest_March_HW_Is_Init(void);

Description

Checks if RamTest_March_HW_Init has been called.

This is used by specific RAM tests to check that the HW has been initialized before trying to use it.

A user does not have to use this function.

Input Parameters

NONE	N/A
Output Parameters	
NONE	N/A
Return Values	
bool	True = Test passed. False = Test or parameter check failed.

Declaration

void RamTest_March_HW_Wait_DMAC(void);

Description

Wait for the DMAC channel to complete a transfer.

This is used by specific RAM tests and does not need to be called by a user.

NOTE: In theory a user could add some code into this blocking loop. However, as this is called during RAM testing, they would need to be very careful not to use any RAM that is involved in the current RAM test.

Note: Only available if RAMTEST_USE_DMAC is #defined.

Input Parameters		
NONE	N/A	
Output Parameters		
NONE	N/A	
Return Values		
NONE	N/A	

(4) **RAM Test Stack API**

This API enables a RAM test to be performed on an area of RAM that includes the stack. As the function that performs the RAM test requires a stack these functions will, re-locate the stack to a supplied new RAM area allowing the original stack area to be tested. Three functions are provided that can be called depending upon which stack (Main or Process) is in the test area or if both are.

It is the calling function's responsibility to ensure that the processor is in Privileged Mode. If this function is called in unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged mode.

NOTE: The stack testing functions make use of one of the March Ram tests presented previously by passing it in as a function pointer. If using a test that requires initialization before use it is the user's responsibility to ensure this has been done before trying to use the test by calling one of these functions.

Table 5: RAM Test Stack API Source files

File name
ramtest_stack.h
ramtest_stack.c
StartBothTestAssembly.asm,
StartMainTestAssembly.asm,
StartProcTestAssembly.asm

Declaration

Declaration					
bool RamTest_Sta	ack_M	lain(uint32_t ui32_StartAddr,			
		uint32_t ui32_EndAddr,			
		void* p_RAMSafe,			
		uint32_t ui32_NewMSP,			
		<pre>TEST_FUNC fpTest_Func);</pre>			
Description					
RAM test of an area t	hat in	cludes the Main Stack (but not the Process stack).			
Input Parameters					
uint32_t ui32_StartAddr		The address of the first word of RAM to be tested. This must be compatible with the requirements of the fpTest_Func.			
uint32_t ui32_EndAddr		The address of the last word of RAM to be tested. This must be compatible with the equirements of the fpTest_Func.			
void* p_RAMSafe		Set to the start of a buffer that is the same size as the test RAM area. This must be compatible with the requirements of the fpTest_Func.			
uint32_t ui32_NewUSP	New Stack pointer value for the Main stack to be relocated to.				
	Fun	ction pointer of type TEST_FUNC to the actual memory test to be used.			
TEST_FUNC	Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);				
fpTest_Func		For example 'RamTest_March_X_WOM'.			
Output Parameters					
NONE		N/A			
Return Values					
bool		True = Test passed. False = Test or parameter check failed.			

Declaration				
bool RamTest_Sta	ck_Proc(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr, void* p_RAMSafe, uint32_t ui32_NewPSP, TEST_FUNC fpTest_Func);			
Description				
RAM test of an area t	hat includes the Process Stack. (but not the Main stack)			
Input Parameters				
uint32_t ui32_StartAddr	The address of the first word of RAM to be tested. This must be compatible with the requirements of the fpTest_Func.			
uint32_t ui32_EndAddr	The address of the last word of RAM to be tested. This must be compatible with the requirements of the fpTest_Func.			
void* p_RAMSafe	Set to the start of a buffer that is the same size as the test RAM area. This must be compatib with the requirements of the fpTest_Func.			
uint32_t ui32_NewPSP	New Stack pointer value for the Process stack to be relocated to.			
	Function pointer of type TEST_FUNC to the actual memory test to be used.			
fpTest_Func	Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);			
	For example 'RamTest_March_X_WOM'.			
Output Parameters				
NONE N/A				
Return Values				
bool	True = Test passed. False = Test or parameter check failed.			

Declaration			
bool RamTest_Stac	ks(uint32_t ui32_StartAddr,		
	uint32_t ui32_EndAddr,		
	void* p_RAMSafe,		
	uint32_t ui32_NewPSP,		
	uint32_t ui32_NewMSP,		
	<pre>TEST_FUNC fpTest_Func);</pre>		
Description			
RAM test of an area t	that includes both the Stacks (that is, Main and Process stacks).		
Input Parameters			
uint32_t ui32_StartAddr	The address of the first word of RAM to be tested. This must be compatible with the requirements of the fpTest_Func.		
uint32_t ui32_EndAddr	The address of the last word of RAM to be tested. This must be compatible with the requirements of the fpTest_Func.		
void* p_RAMSafe	Set to the start of a buffer that is the same size as the test RAM area. This must be compatible with the requirements of the fpTest_Func.		
uint32_t ui32_NewPSP	New Stack pointer value for the Process stack to be relocated to.		
uint32_t ui32_NewMSP	New Stack pointer value for the Main stack to be relocated to.		
	Function pointer of type TEST_FUNC to the actual memory test to be used.		
TEST_FUNC fpTest_Func	Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void* const);		
	r example 'RamTest_March_X_WOM'.		
Output Parameters			
NONE	N/A		
Return Values			
bool	True = Test passed. False = Test or parameter check failed.		

1.4 Clock

The Synergy S7G2 has a Clock Frequency Accuracy Measurement Circuit (CAC) which can be used to detect monitor the Main clock frequency during run time.

Either one of MAIN, SUB_CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB or an External clock on the CACREF pin can be used as a reference clock source.

If using an external reference clock:

- 1. #define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in file clock_monitor.h.
- 2. Be sure to provide target and reference clocks frequency in Hz.

If using one of the internal source clocks:

- 1. Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.
- 2. Be sure to select the reference clock (through ref_clock input parameter).

3. Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupt can be generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of interrupt and handle them. See Section 2.4 for an example of interrupt activation. The allowable frequency range can be adjusted using:

/*Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

In addition to the CAC function the Synergy S7G2 has an Oscillation Stop Detection Circuit. If the main clock stops, the Middle-Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The User of this module must handle the NMI interrupt and check the NMISR.OSTST bit.

Table 6: Clock Source files:

File name
clock_monitor.h
clock_monitor.c

The SW relies on S7G2_registers.h to access peripheral registers.

There are two versions of the ClockMonitor_Init function:

1. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

Syntax		
void ClockMonitor_Init	່ ເ	<pre>irce_t target_clock, clock_source_t ref_clock, iint32_t target_clock_frequency, iint32_t ref_clock_frequency, CLOCK MONITOR ERROR CALL BACK CallBack);</pre>
Description		
1. Start monitoring the targ reference clock selected thr		ected through target_clock input parameter using the CAC module and the ock input parameter.
2. Enables Oscillation Stop	Detection a	nd configures an NMI to be generated if detected.
Input Parameters		
<pre>clock_source_t target_clock</pre>		The target clock to be monitored. The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK clock, and PCLKB clock.
clock_source_t ref_clock		The reference clock to be used by CAC to monitor the target clock. The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK clock, and PCLKB clock.
<pre>uint32_t target_clock_frequency</pre>		The target clock frequency in Hz
<pre>uint32_t ref_clock_frequency</pre>		The reference clock frequency in Hz.
CLOCK_MONITOR_ERROR_CALL_BACK CallBack		Function to be called if the main clock deviates from the allowable range.
Output Parameters		
NONE	N/A	
Return Values		
None	N/A	

2. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is defined.

Syntax				
void ClockMonitor_Init	<pre>void ClockMonitor_Init(clock_source_t target_clock,</pre>			
uint32_t MainClockFrequency,				
		_t ExternalRefClockFrequency,		
		MONITOR_CACREF_PIN ePin,		
D	CLOCK	MONITOR_ERROR_CALL_BACK CallBack);		
Description				
1. Start monitoring the targ CACREF pin as a reference		ected through target_clock input parameter using the CAC module and the		
2. Enables Oscillation Stop	Detection a	and configures an NMI to be generated if detected.		
Input Parameters				
<pre>clock_source_t target_clock</pre>		The target clock to be monitored. The clock shall be one among Main clock, Sub clock, HOCO clock, MOCO clock, LOCO clock, IWDTCLK clock and PCLKB clock.		
<pre>uint32_t MainClockFrequency</pre>		Main clock expected frequency in Hz.		
uint32_t ExternalRefClockFrequency		External reference clock frequency in Hz.		
CLOCK_MONITOR_CACREF_PIN ePin		The pin to use for CACREF. See CLOCK_MONITOR_CACREF_PIN for details.		
CLOCK_MONITOR_ERROR_CALL_BACK CallBack		Function to be called if the main clock deviates from the allowable range or if this function fails.		
Output Parameters				
NONE	N/A			
Return Values				
None	N/A			

1.5 Independent Watchdog Timer

A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the watchdog timer will not be refreshed by software as it is required to be and will therefore detect an error.

The Independent Watchdog Timer (iWDT) module of the Synergy S7G2 is used for this. It includes a windowing feature so that the refresh must happen within a specified 'window' rather than just before a specified time. It can be configured to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for iWDT can be done through the OFS0 register whose settings are controlled by the user (see Section 2.5 for an example of configuration). A function is provided to be used after a reset to decide if the IWDT has caused the reset. The test module relies on the S7G2_registers.h header file to access to peripheral registers.

Table 7: Independent Watchdog Timer Source files

File name	
iwdt.h	
iwdt.c	

Syntax				
<pre>void IWDT_Init (void)</pre>				
Description				
Initialize the independent v time to prevent a watchdog		er. After calling this, the IWDT_kick function must then be called at the correct		
NOTE: If configured to proby user code which must c		rrupt then this will be the Non Maskable Interrupt (NMI). This must be handled IISR.IWDTST flag.		
Input Parameters				
NONE		N/A		
Output Parameters				
NONE	N/A			
Return Values				
None	N/A			
Syntax				
void IWDT_Kick(void)				
Description				
Refresh the watchdog time	r count.			
Input Parameters				
	N/A			
NONE	10/21			
Output Parameters				
NONE N/A				
Return Values				
None	None N/A			
Syntax				
bool IWDT_DidReset(void)				
Description				
Returns true if the iWDT has timed out or not been refreshed correctly. This can be called after a reset to decide if the watchdog timer caused the reset.				
Input Parameters				
NONE	N/A			
Output Parameters				
NONE	N/A			

Return Values	
bool	True if watchdog timer has timed out, otherwise false.

1.6 Voltage

The Synergy S7G2 has a Voltage Detection Circuit. This can be used to detect the power supply voltage (VCC) falling below a specified voltage. The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate a NMI interrupt when VCC drops below a specified level. The hardware is also capable of generating a reset but this behavior is not supported in the sample code. The SW module relies on S7G2_registers.h header file to access peripheral registers.

Table 8: Voltage Source files:

File name
voltage.h
voltage.c

Syntax		
void VoltageMonitor_In	it(VOLTAGE_MONI	TOR_LEVEL eVoltage)
Description		
Initialize and start voltage	monitoring. An NM	I will be generated if VCC falls below the specified voltage.
NOTE: The Non-Maskable flag.	e Interrupt (NMI) m	ust be handled by user code which must check the NMISR.LVDST
Input Parameters		
VOLTAGE_MONITOR_LEVEL	eVoltage	The specified low voltage level. See declaration of enumerated type VOLTAGE_MONITOR_LEVEL in voltage.h for details.
Output Parameters		
NONE	N/A	
Return Values		
None	N/A	

1.7 ADC12

The ADC12 has a diagnostic mode that can be used to test the ADC. The diagnostic mode can be configured so that a test is performed every time the ADC is used normally for a conversion. The diagnostic reference voltage and hence the expected result is automatically rotated between zero, half scale and full scale. The diagnostic SW provides two automatic conversions (zero and full scale). The SW module relies on S7G2_registers.h header file to access peripheral registers.

Table 9: ADC12 Source files

File name	
test_adc12.h	
test_adc12.c	

Syntax				
<pre>void Test_ADC12_Init_u</pre>	10(vo	id)		
Description	Description			
Initialize unit 0 of ADC12	Initialize unit 0 of ADC12 module. This must be called before using any other ADC functions.			
Input Parameters				
None		N/A		
Output Parameters				
NONE	N/A			
Return Values				
NONE	N/A			

Syntax			
<pre>void Test_ADC12_Init_u1(void)</pre>			
Description	Description		
Initialize unit 1 of ADC12 module. This must be called before using any other ADC functions.			
Input Parameters			
None		N/A	
Output Parameters			
NONE	N/A		
Return Values			
NONE	N/A		

Syntax				
bool Test_ADC12_Wait_u	bool Test_ADC12_Wait_u0(void)			
Description				
This function waits while two ADC conversions are made by unit 0 of ADC12 module. This test does not preserve ADC configuration and is therefore suitable as a power-on test rather than as a run-time periodic test.				
Input Parameters				
NONE		N/A		
Output Parameters				
NONE	N/A			
Return Values				
bool	True = Test passed. False = test failed.			

Syntax			
bool Test_ADC12_Wait_u1(void)			
Description			
This function waits while two ADC conversions are made by unit 1 of ADC12 module. This test does not preserve ADC configuration and is therefore suitable as a power-on test rather than as a run-time periodic test.			
Input Parameters			
NONE	N/A		
Output Parameters			
NONE	N/A		
Return Values			
bool	True = Test passed. False = test failed.		
Syntax			

void Test_ADC12_Start_u0(ADC12_ERROR_CALL_BACK Callback)
Description

Set up unit 0 of ADC module so diagnostic tests will be performed each time ADC is used. The diagnostic reference voltage is automatically rotated (Zero, half VREF and VREH).

User code must now call the Test_ADC12_CheckResult function either periodically or following every ADC completion to check the diagnostic result.

Input Parameters		
ADC12_ERROR_CALL_BACK Callback	Function to call if an error is detected. NOTE: This function will only get called if Test_ADC12_CheckResult is called with parameter bCallErrorHandler set true.	
Output Parameters		
NONE	N/A	
Return Values		
NONE	N/A	

Syntax

void Test_ADC12_Start_u1(ADC12_ERROR_CALL_BACK Callback)

Description

Set up unit 1 of ADC module so diagnostic tests will be performed each time ADC is used. The diagnostic reference voltage is automatically rotated (Zero, half VREF and VREH).

User code must now call the Test_ADC12_CheckResult function either periodically or following every ADC completion to check the diagnostic result.

Input Parameters

ADC12_ERROR_CALL_BACK Callback	Function to call if an error is detected. NOTE: This function will only get called if Test_ADC12_CheckResult is called with parameter bCallErrorHandler set true.	
Output Parameters		
NONE	N/A	

Return Values	
NONE	N/A

Syntax		
bool Test_ADC12_CheckR	esul	t_u0(bool bCallErrorHandler)
Description		
Check that ADC unit 0 diagnostic result is as expected.		
This must be called after Test_ADC12_Start and then be called periodically or whenever an ADC conversion completes.		
NOTE: The actual result is allowed to be with a certain tolerance of the expected result. See ADC12_TOLERANCE in test_ad12.c for details.		
Input Parameters		
bool bCallErrorHandler		Set true to call the error call-back function supplied to function Test_ADC12_Start, otherwise false.
Output Parameters		
NONE	N/A	
Return Values		
bool	ol True = Test passed. False = test failed.	

Syntax

bool Test_ADC12_CheckResult_u1(bool bCallErrorHandler)

Description

Check the ADC unit 1 diagnostic result is as expected.

This must be called after Test_ADC12_Start and then be called periodically or whenever an ADC conversion completes.

NOTE: The actual result is allowed to be with a certain tolerance of the expected result. See ADC12_TOLERANCE in test_ad12.c for details.

Input Parameters		
bool bCallErrorHandler	Set true to call the error call-back function supplied to function Test_ADC otherwise false.	12_Start,
Output Parameters		
NONE	N/A	
Return Values		
bool	e = Test passed. False = test failed.	

1.8 Temperature

The Synergy S7G2 has a Temperature Sensor module that can monitor the MCU temperature. The ADC12 module unit 1 is also required in conjunction with the Temperature Sensor. The SW module relies on S7G2_registers.h header file to access peripheral registers.

Table 10: Temperature Source files:

File name
temperature.h
temperature.c

Syntax			
•			
<pre>void Temperature_Init(uint16_t Temperature_ADC_Value_Min,</pre>			
		t Temperature_ADC_Value_Max,	
Description	TEMPERA	TURE_ERROR_CALL_BACK Error_callback)	
Description			
ADC12 output values. After	er calling thi	enable the ADC12 module. Specify an allowed temperature range in terms of s function the Temperature_Start function must be called periodically to mperature Sensor output and then the remaining functions must be used to	
Input Parameters			
uint16_t Temperature_ADC_Value_Min		Specify the minimum value that the ADC12 should output when reading the temperature sensor.	
uint16_t Temperature_ADC_Value_Max		Specify the maximum value that the ADC12 should output when reading the temperature sensor.	
TEMPERATURE_ERROR_CALL_BACK Error_callback		This function will be called by function Temperature_CheckResult if the temperature (ADC12 Value) is outside the specified allowable range.	
Output Parameters			
NONE	N/A		
Return Values			
None N/A			
Syntax			
<pre>void Temperature_Start(void);</pre>			
Description	Description		

Start an ADC conversion to read the temperature. This will use the ADC12 module, destroying its current settings. It is the user's responsibility to ensure this behavior is not a problem.

Following this function use function Temperature_Read_Wait or Temperature_CheckResult.

Input Parameters		
NONE		N/A
Output Parameters		
NONE	N/A	
Return Values		
None	N/A	

Syntax			
void Temperature_Wait_	Finish (vo	vid);	
Description			
This function blocks until a temperature conversion, started by Temperature_Start, has completed.			
Input Parameters			
NONE		N/A	
Output Parameters			
NONE N/A			
Return Values			
None	N/A		

Syntax			
uint16_t Temperature_R	ead_Wait ((void);	
Description			
This function blocks until a the ADC12 value.	a temperatur	e conversion, started by Temperature_Start, has completed and then returns	
Input Parameters			
NONE		N/A	
Output Parameters			
NONE N/A			
Return Values			
uint16_t	ADC12 output value		

bool Temperature_CheckResult(bool bCallErrorHandler)			
Description			
This function blocks until a temperature conversion, started by Temperature_Start, has completed and then checks if the ADC12 value is within the range specified in Temperature_Init.			
Input Parameters			
bCallErrorHandler		Set true to get the callback registered in Temperature_Init called if the temperature falls outside the specified limits, otherwise set false.	
Output Parameters			
NONE	N/A		
Return Values			
bool	True: Result falls within specified limits. False: Result falls outside specified limits.		

1.9 Port Output Enable (POE)

The Port Output Enable for the GPT (POEG) module can be used to place General PWM Timer (GPT) output pins in the output disable state in one of the following ways: input level detection of the GTETRG pins; Output-disable request

from the GPT; Comparator interrupt request detection; Oscillation stop detection of the clock generation circuit; Register settings.

This software demonstrates the setting of certain pins into the high-impedance state when a rising edge on GTETRGn (n = A, B, C, D) input pin is detected or when oscillation stop is detected. Note that the user must configuration of GTETRGn pin within POE_init function, as well as enable handling interrupts generated by the POE. See Section 2.9 for more details about enabling the handling of POE interrupt. The SW module relies on S7G2_registers.h header file to access peripheral registers.

Table 11: Port Output Enable Source files

File name
POE.h, GPT.h
POE.c, GPT.c

Syntax

void POE_Init(POE_CALL_BACK Callback);

Description

This software configures the POE:

1. To put the GTIOCA and GTIOCB pins of all GPT channels in the high-impedance state if a rising edge on the GTETRGn (n = A, B, C, D) input pin is detected. An interrupt is also generated.

Note that user shall ensure the configuration of GTETRGn pin correspondent to the POEG group which is intended to be used. Take care that the pin choice strictly depends on the board where the microcontroller is placed.

2. To put the GTIOCA and GTIOCB pins of all GPT channels in the high-impedance state if Oscillation Stop is detected.

Input Parameters		
POE_CALL_BACK Callback	Function to call if a rising edge on the GTETRGn input pin is detected.	
Output Parameters		
NONE	N/A	

Syntax			
<pre>void POE_ClearFlags_ga(ve</pre>	<pre>void POE_ClearFlags_ga(void);</pre>		
Description			
• •	ion clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS Oscillation Stop Detection Flag and Software stop flag.		
This will release the pins from the high-impedance state.			
Input Parameters			
NONE	ONE N/A		
Output Parameters			
NONE	N/A		

Syntax
<pre>void POE_ClearFlags_gb(void);</pre>
Description

, ,,	· · · · · · · · · · · · · · · · · · ·
For POEG group B, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.	
This will release the pins from the high-impedance state.	
Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Syntax	
<pre>void POE_ClearFlags_gc(void);</pre>	
Description	
For POEG group C, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.	
This will release the pins from the high-impedance state.	
Input Parameters	
NONE	N/A
Output Parameters	
NONE	N/A
Syntax	
<pre>void POE_ClearFlags_gd(void);</pre>	
Description	
For POEG group D, this function clears the Port Input Detection Flag, the Detection Flag for GPT or ACMPHS Output-Disable Request, the Oscillation Stop Detection Flag and Software stop flag.	
This will release the pins from the high-impedance state.	
Input Parameters	
NONE	N/A
Output Parameters	

N/A

NONE

Syntax				
<pre>void GPT_Init(POE_group_t</pre>	group);			
Description				
This function configures the GPT in order to associate GTIOCA and GTIOCB pins of each GPT channel to the POE group stated by input parameter 'group'. Input Parameters				
POE_group_t group	POE group to associate the GTP channels.			
Output Parameters				
NONE N/	A			

2. Example Usage

This section gives to the user some useful suggestions about how to apply the released software.

The testing can be split into two parts:

- 1. Power-Up Tests. These are tests run once following a reset. They should be run as soon as possible but especially if start-up time is important it may be permissible to run some initialization code before running all the tests so that for example a faster main clock can be selected.
- 2. Periodic Tests. These are tests that are run regularly throughout normal program operation. This document does not provide a judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed is up to the user depending upon how their application is structured.

The following sections provide an example of how each test type should be used.

2.1 CPU

If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be called. As any error in the CPU is very serious the aim of this function should be to get to a safe state, where software execution is not relied upon, as soon as possible.

2.1.1 Power-Up

All the CPU tests should be run as soon as possible following a reset.

NOTE: The function must be called before the device is put in Unprivileged mode.

The function CPU_Test_All can be used to automatically run all the CPU tests.

2.1.2 Periodic

To test the CPU periodically, the function CPU_Test_All can be used, as it is for the power-up tests, to automatically run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call, the user can choose to call each of the individual CPU test functions in turn each time the CPU periodic test is scheduled.

2.2 ROM

The ROM is tested by calculating a CRC value (CRC32C) of its contents and comparing with a reference CRC value that must be added to a specific location in the ROM not included in the CRC calculation.

The IAR for ARM Toolchain can be used to calculate and add a CRC value to the built file at a location specified by the user. This can be done via a dialog in IAR. See

Figure 1: Adding Reference CRC.

The CRC module must be initialized before use with a call to the CRC_Init function.

Ensure that all ROM sections used are included in the CRC calculation that both IAR and the CRC Test code use so that the results will match.

Category: General Options Static Analysis Runtime Checking C/C++ Compiler Assembler Output Converter Custom Build Build Actions Linker Debugger Simulator Angel CMSIS DAP GDB Server IAR ROM-monitor I-jet/JTAGjet J-Link/J-Trace TI Stellaris Macraigor PE micro RDI ST-LINK Third-Party Driver TI XDS	Factory Settings Output List #define Diagnostics Checksum Extra Options 4 Image: Provide the state of
---	--

Figure 1: Adding Reference CRC

2.2.1 Power-Up

All the ROM memory used must be tested at power-up.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated CRC value.

If the ROM used is not in one contiguous block then the following procedure must be used.

- 1. Call CRC_Start.
- 2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.
- 3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function CRC_Verify.

It is a user's responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

2.2.2 Periodic

It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is contiguous, as this allows the CRC value to be calculated in sections so that no single function call takes too long. Follow the procedure as specified for the power-up tests and ensure that each address range is small enough that a call to CRC_AddRange does not take too long.

2.3 RAM

It is very important to realize that the area of RAM that needs to be tested may change dramatically depending upon your project's memory map.

If you are using the 'HW' versions of the RAM Tests (where the DOC and possibly DMAC are used), then you must call function RamTest_March_HW_Init prior to running the test. The following #define in file ramtest_march_HW.h makes this selection:

#define USE_HW_VERSION_OF_RAM_TESTS

When testing RAM, it is important to remember the following points:

1. RAM being tested cannot be used for anything else including the current stack.

- 2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and restored from.
- 3. Any test of the stack requires a RAM buffer where the stack can be relocated to.
- 4. There are two stacks, Main and Process. It is the current stack that must be relocated before being used.
- 5. To relocate the stack, the device must be in supervisor mode. The device automatically enters default mode when handling an interrupt.

2.3.1 Power-Up

At power-up, a full destructive test can be performed on the RAM other than the Stack. The Stack must be tested with a non-destructive test. However, if startup time is very important, it might be possible to fine tune this so that only the area of Stack used before the power-up RAM test is performed using the slower non-destructive test and the rest of the Stack tested with a destructive test.

2.3.2 Periodic

All periodic tests must be non-destructive.

It is assumed that the periodic tests are called from an interrupt handler and therefore the device is in privileged mode.

2.4 Clock

The monitoring of the main clock is set up with a single function call to ClockMonitor_Init. There are two versions of this file depending on the choice between using an external or internal reference clock as decided by the following #define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:

```
#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK
```

#define MAIN_CLOCK_FREQUENCY_HZ (2400000) // 24 MHz
#define EXTERNAL_REF_CLOCK_FREQUENCY_HZ (15000) // 15kHz

ClockMonitor_Init(MAIN,

```
MAIN_CLOCK_FREQUENCY_HZ,EXTERNAL_REF_CLOCK_FREQUENCY_HZ,eCLOCK_MONITOR_CACREF_
A,CAC_Error_Detected_Loop);
```

#else

```
#define TARGET_CLOCK_FREQUENCY_HZ (24000000) // 24 MHz
#define REFERENCE CLOCK FREQUENCY HZ (15000) // 15kHz
```

ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ, REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop); /*NOTE: The IWDTCLK clock must be enabled before starting the clock monitoring.*/

#endif

This can be called as soon as the main clock has been configured and the IWDT has been enabled. See Section 1.5 for enabling the iWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Cortex-M4 Nested Vectored Interrupt Controller (NVIC) should be configured in order to handle it.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number correspondent to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In particular, it is necessary to configure one IELSR register so that it is linked to the aforementioned CAC events:

IELSRn.IELS = 0x87; // (CAC_FERRI)
IELSRn.IELS = 0x89; // (CAC_OVFI)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions are set:

```
NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);
```

Where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number that are defined by the user 1 .

If oscillation stop is detected, an NMI interrupt is generated. User code must handle this NMI interrupt and check the NMISR.OSTST flag as shown in this example:

```
if(1 == R_ICU->NMISR_b.OSTST)
{
    Clock_Stop_Detection();
    /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
    R_ICU->NMICLR_b.OSTCLR = 1;
}
```

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

2.5 Independent Watchdog Timer

In order to configure the Independent Watchdog Timer, it is necessary to set coherently the OFS0 register. The following code can be used to set the value that has to be stored at the OFS0 memory allocation (OFS0 address = 0x00000400):

```
/* IWDT Start Mode Select */
#define IWDTSTRT_ENABLED (0x0000000)
#define IWDTSTRT_DISABLED (0x0000001)
/*Time-Out Period selection*/
#define IWDT_TOP_128 (0x0000000)
#define IWDT_TOP_512
                      (0 \times 00000001)
#define IWDT_TOP_1024 (0x0000002)
#define IWDT_TOP_2048 (0x0000003)
/*Clock selection. (IWDTCLK/x) */
#define IWDT_CKS_DIV_1 (0x00000000) // 0b0000
#define IWDT_CKS_DIV_16 (0x00000002) // 0b0010
#define IWDT_CKS_DIV_32 (0x0000003) // 0b0011
#define IWDT_CKS_DIV_64 (0x00000004) // 0b0100
#define IWDT_CKS_DIV_128 (0x000000F) // 0b1111
#define IWDT_CKS_DIV_256 (0x00000005) // 0b0101
/*Window start Position*/
#define IWDT_WINDOW_START_25
                              (0x0000000)
#define IWDT_WINDOW_START_50
                                (0x0000001)
#define IWDT WINDOW START 75
                              (0x0000002)
#define IWDT_WINDOW_START_NO_START (0x0000003) /*100%*/
```

¹ See Table 2-16 of "Cortex-M4 Devices: Generic User Guide", first release, 16 December 2010 for more details about IRQ numbers.

Renesas Synergy[™] S7G2 Group

```
/*Window end Position*/
#define IWDT_WINDOW_END_75
                                 (0 \times 00000000)
#define IWDT_WINDOW_END_50
                                 (0 \times 00000001)
#define IWDT_WINDOW_END_25
                                 (0x0000002)
#define IWDT WINDOW END NO END (0x0000003) /*0%*/
/*Action when underflow or refresh error */
#define IWDT_ACTION_NMI
                             (0x0000000)
#define IWDT_ACTION_RESET
                               (0 \times 00000001)
/*IWDT Stop Control*/
#define IWDTSTPCTL COUNTING CONTINUE (0x0000000)
#define IWDTSTPCTL COUNTING STOP (0x0000001)
#define BIT0 RESERVED (0x0000001)
#define BIT13_RESERVED (BIT0_RESERVED << 13)</pre>
#define BIT15 RESERVED (BIT0 RESERVED << 15)</pre>
#define OFS0_IWDT_RESET_MASK (0xFFFF0000)
/*This define is used to configure the iWDT peripheral*/
#define OFS0_IWDT_CFG (BIT15_RESERVED | BIT13_RESERVED | BIT0_RESERVED
(IWDTSTRT_ENABLED << 1) | (IWDT_TOP_1024 << 2) | (IWDT_CKS_DIV_1 << 4)
(IWDT WINDOW END NO END << 8) | (IWDT WINDOW START NO START
                                                                     <<
                                                                         10)
(IWDT ACTION RESET << 12) | (IWDTSTPCTL COUNTING CONTINUE << 14))
```

The value OFS0_IWDT__CFG is stored at the OFS0 address at compile time in order to configure the Independent Watchdog Timer. In particular, the example enables the iWDT to set a time-out period of 1024 clock cycles at IWDTCLK/1 clock frequency and counting also during sleep mode of the microcontroller. The example does not set any start/end of watchdog window and configure a reset in case of watchdog expiration.

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to IWDT_Init:

```
/*Setup the Independent WDT.*/
IWDT_Init();
```

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out and performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the specified window. A watchdog timer refresh is called by calling this:

```
/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();
```

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle the resulting interrupt.

If the watchdog timer has been configured to perform a reset on error detection then following a reset the code should check if the IWDT caused the reset by calling IWDT_DidReset:

```
if(TRUE == IWDT_DidReset())
{
    /*todo: Handle a watchdog reset.*/
    while(1){
        /*DO NOTHING*/
    }
}
```


2.6 Voltage

The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init function. This should be setup as soon as possible following a power on reset. The following example sets up the voltage monitor to generate an NMI if the voltage drops below 2.99 V.

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_2_99);

If a low voltage condition is detected, an NMI interrupt will be generated that the user must handle:

```
/*Low Voltage LVD1*/
if(1 == R_ICU->NMISR_b.LVD1ST)
{
    Voltage_Test_Failure();
    /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/
    R_ICU->NMICLR_b.LVD1CLR = 1;
}
```

2.7 ADC12

The ADC12 module has a built in diagnostic mode which allows various reference voltages to be tested against.

To account for allowed inaccuracies, the expected result is allowed to fall within a tolerance defined using:

```
#define ADC12_TOLERANCE 8
```

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this tolerance could be tightened.

The ADC12 Test module must be initialized with a call to Test_ADC12_Init_uX (X = 0.1).

2.7.1 Power-Up

At power-up, the ADC12 module can be tested using the Test_ADC12_Wait_uX function. This function waits until two AD conversions are performed, one using reference voltage of VREF and the other 0 V. The return value of this function must be checked for the result.

2.7.2 Periodic

The periodic testing should start with a single call to Test_ADC12_Start_uX. Following that the ADC12 module will perform a reference conversion each time it is used. The reference voltage is rotated between 0 V, VREF/2 and VREF. The result of these reference conversions must be checked periodically using a call to Test_ADC12_CheckResult_uX.

2.8 Temperature

When testing the MCU temperature, it is important to remember that the ADC12 module unit 1 will be used. Therefore if the user's code also uses the ADC12 to monitor analog pins it is important that resource sharing of the ADC12 module is carefully considered.

The temperature sensor must be initialized before use with a call to Temperature_Init. This function must be passed the allowable range of temperatures expressed in terms of the ADC12 output. See the Synergy S7G2 Hardware Manual for details on how to calculate/find by experiment these values.

2.8.1 Power-Up

Temperature test procedure at power-up will be the same as explained for the periodic tests.

2.8.2 Periodic

Periodically the use of the ADC12 module must be taken over by the temperature sensor. To make a temperature reading, the user calls this function:

```
/*Start ADC reading temperature sensor output.*/
```


Temperature_Start();

The result can then be checked against the allowable range supplied in the Temperature_Init function with a call to:

```
/*The registered Error callback will be called if there is an error. */
Temperature_CheckResult(TRUE);
```

To avoid the periodic test blocking the SW application for too long, it can be arranged so that each time the periodic test is scheduled it actually checks the result of the temperature test started on the previous scheduled test and then start a new conversion.

The user's code can use functions Temperature_Is_Finished or Temperature_Wait_Finish to determine when the application can resume using the ADC12 to read analog pins.

2.9 POE

The POE initialization and start-up is made using the following call:

```
POE_Init(POE_Event_Detected);
```

The user must carefully study the description of POE_Init and consult the Synergy S7G2 Hardware manual to determine if the sample configuration of the POE meets the requirements of the user's system. Depending upon the pins used in the user's system, the POE.c file may need to be adapted for the desired behavior.

In order to enable interrupt generation by the POE, both Interrupt Controller Unit (ICU) and Cortex-M4 Nested Vectored Interrupt Controller (NVIC) must be configured to handle it.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number corresponding to the POE group events (POEG_GROUP0 = 0x9A, POEG_GROUP1 = 0x9B, POEG_GROUP2 = 0x9C, POEG_GROUP3 = 0x9D). In particular, it is necessary to configure one IELSR register so that it is linked to the aforementioned CAC events:

```
IELSRn.IELS = 0x9A; // (POEG_GROUP0)
IELSRn.IELS = 0x9B; // (POEG_GROUP1)
IELSRn.IELS = 0x9C; // (POEG_GROUP2)
IELSRn.IELS = 0x9D; // (POEG_GROUP3)
```

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions must be set:

NVIC_EnableIRQ(POEG0_EVENT_IRQn); NVIC_EnableIRQ(POEG1_EVENT_IRQn); NVIC_EnableIRQ(POEG2_EVENT_IRQn); NVIC_EnableIRQ(POEG3_EVENT_IRQn);

Where POEG0_EVENT_IRQn, POEG1_EVENT_IRQn, POEG2_EVENT_IRQn and POEG3_EVENT_IRQn are the IRQ numbers that must be defined by the user².

3. Benchmarking

3.1 Environment

- 1. Development board: DK-S7G2M v3.0
- 2. Clocks: EXTAL = 24 MHz, ICLK = 240 MHz, PCLKB = 60 MHz, PCLKD = 120 MHz
- 3. MCU: R7FS7G27H2A01CBD
- 4. Tool chain: IAR Embedded Workbench for ARM , Functional Safety, v.7.40.6.9816
- 5. In-circuit debugger: ARM Debug + ETM connector and SEGGER J-link on board

Build option:

- 1. General option:
 - 1. Target = Renesas R7FS7G27H

² See Table 2-16 of "Cortex-M4 Devices: Generic User Guide", first release, 16 December 2010 for more details about IRQ numbers.

- 2. Complier Settings:
 - 1. Language = C
 - 2. C-dialect = C-99
 - 3. Language Conformance = Standard with IAR extension
 - 4. Plain 'char' is: Unsigned
 - 5. Floating-point semantics: Strict conformance
 - 6. Optimization Level: None

3.2 Results

3.2.1 CPU

Table 12: CPU test results

Measurement	Result Non-CouplingTest (both CPU and FPU)	Result Coulping Test (both CPU and FPU)
ROM usage (bytes)	27346	27502
RAM usage (bytes)	0	0
Stack usage (bytes)	0	0
Clock Cycle Count – CPU_TestAll	10094	1046
Time Measured (µs) @240 MHz - CPU_TestAll	42	4.3

3.2.2 ROM

Table 13: Test results for CRC32C

Measurement	Result
ROM usage (bytes)	170
RAM usage (bytes)	0
Stack usage (bytes)	0
Clock Cycle Count – CRC_Init	130
Time Measured (µs) @240 MHz – CRC_Init	0.5
Clock Cycle Count – CRC_Calculate (ROM overall, that is, 4 MB)	14680166
Time Measured (ms) @240 MHz - CRC_Calculate (4 MB)	61.17
Clock Cycle Count – CRC_Calculate (1kB)	14472
Time Measured (ms) @240 MHz - CRC_Calculate (1 kB)	60.3
Clock Cycle Count – CRC_Calculate (4kB)	57464
Time Measured (ms) @240 MHz - CRC_Calculate (4 kB)	239.4
Clock Cycle Count – CRC_Calculate (16kB)	229496
Time Measured (ms) @240 MHz - CRC_Calculate (16 kB)	956.2
Clock Cycle Count – CRC_Verify	78
Time Measured (us) @240 MHz - CRC_Verify	0.3

3.2.3 RAM

The tests were executed in 8- and 32-bit access width configurations. The 32-bit word limit was always used as it was found that using a smaller limit did not improve performance.

(1) March C

Table 14: March C test results (8-bit access, 32-bit word limit)

Measurement			Normal Result	HW (DOC+DMAC) Result
ROM usage			508	564
RAM usage ((bytes)		0	0
Stack usage	(bytes)		80	88
Stack usage	Extra (bytes)		112	120
		1024 bytes	1101136	1257046
	Destructive	500 bytes	537836	614080
		100 bytes	107840	123292
	Non	1024 bytes	1123712	1275774
Clock cycle	Non- destructive	500 bytes	548884	623390
count		100 bytes	110082	125398
	Extra	1024 bytes	2292432	2534864
		500 bytes	1119720	1238476
		100 bytes	224518	248876
		1024 bytes	4.59	5.24
	Destructive	500 bytes	2.24	2.56
T		100 bytes	0.45	0.51
Time	Non- destructive	1024 bytes	4.68	5.32
Measured (ms) @ 240 MHz		500 bytes	2.29	2.6
		100 bytes	0.46	0.52
	Extra	1024 bytes	9.55	10.56
		500 bytes	4.67	5.16
		100 bytes	0.93	1.04

Measurem	ent		Normal Result	HW (DOC+DMAC) Result
ROM usage	e (bytes)		544	608
RAM usage	e (bytes)		0	0
Stack usag	e (bytes)		80	88
Stack usag	e Extra (bytes)		112	120
		1024 bytes	891474	1075524
	Destructive	500 bytes	435464	525444
		100 bytes	87364	105554
Clock	Non- destructive	1024 bytes	897160	1080436
cycle count		500 bytes	438266	528004
		100 bytes	87964	106312
		1024 bytes	1854682	2156480
	Extra	500 bytes	905980	1053718
		100 bytes	181782	211926
		1024 bytes	3.71	4.48
Time Measured (ms) @ 240 MHz	Destructive	500 bytes	1.81	2.19
		100 bytes	0.36	0.44
	Non- destructive	1024 bytes	3.74	4.5
		500 bytes	1.83	2.2
		100 bytes	0.37	0.44
		1024 bytes	0.77	8 00

1024 bytes

500 bytes

100 bytes

Extra

0.77

3.78

0.76

8.99

4.39

0.88

Table 15: March C test results (32-bit access, 32-bit word limit)

(2) March X WOM

Table 16: March X WOM test results (8-bit access, 32-bit word limit)

Measurement			Normal Result	HW (DOC+DMAC) Result
ROM usage			366	366
RAM usage	(bytes)		0	0
Stack usage	e (bytes)		0	0
Stack usage	e Extra (bytes)		0	0
		1024 bytes	103726	138672
	Destructive	500 bytes	50808	67936
		100 bytes	10406	13936
Clock	Non-	1024 bytes	126302	161248
cycle	destructive	500 bytes	61848	78980
count		100 bytes	12648	16174
	Extra	1024 bytes	240276	312198
		500 bytes	117660	152902
		100 bytes	24058	31302
		1024 bytes	0.43	0.58
	Destructive	500 bytes	0.21	0.28
T		100 bytes	0.04	0.06
Time Measured	Non-	1024 bytes	0.53	0.67
(ms) @ 240 MHz	destructive	500 bytes	0.26	0.33
		100 bytes	0.05	0.07
210 10112		1024 bytes	1	1.3
	Extra	500 bytes	0.49	0.64
		100 bytes	0.1	0.13

Measureme	ent		Normal Result	HW (DOC+DMAC) Result
ROM usage	(bytes)		424	452
RAM usage	(bytes)		0	0
Stack usage	e (bytes)		0	0
Stack usage	e Extra (bytes)		0	0
Clock	Destructive	1024 bytes	24626	54458
cycle		500 bytes	12182	26818
count		100 bytes	2680	5724
	Non-	1024 bytes	30312	60144
	destructive	500 bytes	14982	29620
		100 bytes	3282	6320
	Extra	1024 bytes	57498	117660
		500 bytes	28420	57924
		100 bytes	6220	12324
Time	Destructive	1024 bytes	0.1	0.27
Measured		500 bytes	0.05	0.11
(ms) @		100 bytes	0.01	0.02
240 MHz	Non-	1024 bytes	0.13	0.25
	destructive	500 bytes	0.06	0.12
		100 bytes	0.01	0.03
	Extra	1024 bytes	0.24	0.49
		500 bytes	0.12	0.24
		100 bytes	0.03	0.05

Table 17: March X WOM test results (32-bit access, 32-bit word limit)

(3) Stack Test

Note: The results are the same regardless of the normal or HW implementation, because the stack test does not rely on HW.

Table 18: Stack test results

Measurement	Result
ROM usage (bytes)	356
RAM usage (bytes)	33
Stack usage (bytes) - RamTest_Stack_Main	12
Stack usage (bytes) - RamTest_Stack_Proc	12
Stack usage (bytes) - RamTest_Stacks	12
Clock Cycle Count – RamTest_Stack_Main	160
(only stack relocation)	
Time Measured (us) @240 MHz -	0.67
RamTest_Stack_Main	
Clock Cycle Count – RamTest_Stack_Proc	160
(only stack relocation)	
Time Measured (us) @240 MHz -	0.67
RamTest_Stack_Proc	
Clock Cycle Count – RamTest_Stacks (only	194
stack relocation)	
Time Measured (us) @240 MHz -	0.81
RamTest_Stacks	

(4) **HW supporting functions**

In this section it is reported the ROM and RAM resources needed to support the utilization of HW peripherals DOC and DMAC.

Table 19: HW supporting function results

Measurement	Result
ROM usage (bytes)	536
RAM usage (bytes)	0
Stack usage (bytes)	0
Clock Cycle Count –	210
RamTest_March_HW_Init	
Time Measured (us) @240 MHz -	0.8
RamTest_March_HW_Init	
Clock Cycle Count –	1010
RamTest_March_HW_PreTest	
Time Measured (us) @240 MHz -	4.2
RamTest_March_HW_PreTest	
Clock Cycle Count –	80
RamTest_March_HW_Is_Init	
Time Measured (us) @240 MHz -	0.3
RamTest_March_HW_Is_Init	

3.2.4 Clock

Table 20: Clock test results

Measurement	Internal reference Clock Result	External Reference Clock Result
ROM usage (bytes)	628	1080
RAM usage (bytes)	4	4
Stack usage (bytes)	56	56
Clock Cycle Count	2856	1372
Time measured (us) @ 240 MHz	11.9	5.7

3.2.5 Independent Watchdog

Table 21: Independent Watchdog test results

Measurement	Result
ROM usage (bytes)	124
RAM usage (bytes)	0
Stack usage (bytes)	0
Clock Cycles Count - IWDT_Init	86
Time measured (us) @ 240 MHz - IWDT_Init	0.3
Clock Cycles Count - IWDT_Kick	80
Time measured (us) @ 240 MHz - IWDT_Kick	0.3
Clock Cycles Count - IWDT_DidReset	96
Time measured (us) @ 240 MHz - IWDT_DidReset	0.4

3.2.6 Voltage

Table 22: Voltage Monitoring test results

Measurement	Result		
ROM usage (bytes)	188		
RAM usage (bytes)	0		
Stack usage (bytes)	0		
Clock Cycles Count	30504		
Time measured (us) @ 240 MHz	127		

3.2.7 ADC12

Table 23: 12-bit ADC Converter test results

Measurement	Result
ROM usage (bytes)	908
RAM usage (bytes)	8
Stack usage (bytes)	0
Clock Cycles Count - Test_ADC12_Init_uX	100
Time measured (us) @ 240 MHz - Test_ADC12_Init_uX	0.4
Clock Cycles Count - Test_ADC12_Wait_uX	702
Time measured (us) @ 240 MHz - Test_ADC12_Wait_uX	2.9
Clock Cycles Count - Test_ADC12_Start_uX	122
Time measured (us) @ 240 MHz- Test_ADC12_Start_uX	0.5
Clock Cycles Count (clock cycles) - Test_ADC12_CheckResult_uX	176
Time measured (us) @ 240 MHz - Test_ADC12_CheckResult_uX	0.7

3.2.8 Temperature

Table 24: Temperature sensor test results

Measurement	Result
ROM usage (bytes)	344
RAM usage (bytes)	8
Stack usage (bytes)	0
Clock Cycles Count - Temperature_Init	160
Time measured (us) @ 240 MHz - Temperature_Init	0.6
Clock Cycles Count - Temperature_Start	43484
Time measured (us) @ 240 MHz - Temperature_Start	181
Clock Cycles Count - Temperature_CheckResult	206
Time measured (us) @ 240 MHz - Temperature_CheckResult	0.8

3.2.9 Port Output Enable

Table 25: Port Output Enable test results

Measurement	Result
ROM usage (bytes)	1556
RAM usage (bytes)	4
Stack usage (bytes)	0
Clock Cycles Count - GPT_init	1434
Time measured (us) @ 240 MHz - GPT_init	5.9
Clock Cycles Count - POE_Init	580
Time measured (us) @ 240 MHz - POE_Init	2.4

4. Additional Information

4.1 Reading an IO Pin State

The actual value of an IO pin can always be read by reading the corresponding pin's Port mn Pin Function Select Register (PmnPFS) (see section 20.2.5 of Synergy S7 HW Manual for details):

20.2.5	FUI	L IIIII	Pin F	uncu	011 3	elect	Regi	ster (I			(111 –	0 10 8	9, A, I	D, II -	. 00 1	0 15)
Address(es):	PFS.P2 PFS.P4 PFS.P6 PFS.P8	200PFS 400PFS 500PFS 300PFS	4004 080 4004 088 4004 090 4004 098 4004 0A0 4004 0A8	0h to PF 0h to PF 0h to PF 0h to PF	S.P215F S.P415F S.P615F S.P815F	PFS 4004 PFS 4004 PFS 4004 PFS 4004	08BCh, 093Ch, 09BCh, 0A3Ch,	PFS.P30 PFS.P50 PFS.P70 PFS.P90	0PFS 40 0PFS 40 0PFS 40 00PFS 40 00PFS 4	004 08C0 004 0940h 004 09C0 004 0A40	h to PFS to PFS h to PFS h to PFS h to PFS	.P315PF .P515PF .P715PF .P915PF	S 4004 S 4004 (S 4004 S 4004	08FCh,)97Ch, 09FCh, 0A7Ch,		
	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_		1	PSEL[4:0)]		-	—	_	_	_	-	_	PMR
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0*2
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	ASEL	ISEL	EOF	EOR	DSC	R[1:0]	_	_	_	NCOD R	_	PCR	_	PDR	PIDR	PODR
Value after reset:	0	0	0	0	0	0*2	0	0	0	0	0	0*2	0	0	x	0
	x: Unde	efined														
Bit	Symbo	bl	Bit nan	ne			D	escripti	on							R/W
b0	PODR		Port Output Data					0: Low output 1: High output.								R/W
b1	PIDR		Port Input Data					0: Low output 1: High output.								R

Figure 2: PmnPFS Register

Website and Support

Support:

t: <u>https://synergygallery.renesas.com/support</u>

Technical Contact Details:

- America: <u>https://renesas.zendesk.com/anonymous_requests/new</u>
- Europe: <u>https://www.renesas.com/en-eu/support/contact.html</u>
- Japan: <u>https://www.renesas.com/ja-jp/support/contact.html</u>

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description							
Rev. Date		Page	Summary						
1.00	Sep 29, 2016	-	Initial version						
1.01	Oct 10, 2016	All	Minor formatting. Clarified that target device is S7G2 Group microcontrollers rather than all S7 Series microcontrollers.						

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use
 of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 1) Release Electronics as used in this document means reflects Electronics Corporation and also includes its majority-owner

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited Version Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Ini Tel: +65-6213-0200, Fax: +65-6213-0300 Innovation Centre, Singapore 339949 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics, Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141