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1. Overview 
This section describes the operating environment and functions of the DRP-AI Quantizer. 

DRP-AI Quantizer is included in the installer of DRP-AI Translator i8. 

After DRP-AI Translator i8 is installed, the product will be deployed to the following path: 
DRP-AI_Translator_i8/drpAI_Quantizer 

 

1.1 Product Configuration 
Table 1.1 lists the components of this product. 

 

Table 1.1   Product Configuration 

Item Description 

r20ut5184ej0102-drp-ai.pdf This manual 

drpAI_Quantizer DRP-AI Quantizer (product covered by this manual) 

 

1.2 Configuration of Files 
Table 1.2 lists the files and modules required for running this tool. 

Table 1.2   Configuration of Files 

Root Folder Folder or File Name Description 

drpAI_Quantizer drpai_quantizer/ Quantization module folder 

onnx_runtime/ ONNX model inference 
module folder 

inference_resnet.py Inference script for testing 
accuracy 

nchw_datareader.py Sample of channel first 
calibration data reader(For 
PyTorch-trained model ) 

nhwc_datareader.py Sample of channel last 
calibration data reader(For 
Keras-trained model ) 

modA_resnet18.onnx FLOAT format ONNX file 
sample 1 (a PyTorch-trained 
ResNet18 model) 

modB_resnet18.onnx FLOAT format ONNX file 
sample 2 (a Keras-trained 
ResNet18 model) 

licenses-abstract.txt License information for the 
modules used in this tool 
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1.3 Target Device 
The target devices of the DRP-AI Quantizer are those of the following series. 

 RZ/V2x (next-generation products) 
 
1.4 Operating Environment 
Table 1.3 describes the operating environment and software to be installed for the DRP-AI Quantizer. 

 
Table 1.3   Operating Environment 

Item Software Name Version Number 

Operating 
environment 

Ubuntu 20.04 LTS, 64-bit version 

Software to be 
Installed 

Python 3.8.10 

ONNX Runtime 1.14.1 

numpy 1.24.3 

pillow 9.5.0 

scipy 1.10.1 

protobuf 4.23.0 

sympy 1.12 

packaging 23.1 

onnxoptimizer 0.3.8 

matplotlib 3.7.1 

 

1.5 Notes on the DRP-AI Quantizer 
Development of the DRP-AI Quantizer was based on the quantization module implemented in ONNX 
Runtime v1.14.1, with some specifications changed and some unique features added. Accordingly, also refer 
to the related documents for ONNX Runtime. 

 
ONNX Runtime < https://github.com/microsoft/onnxruntime/tree/v1.14.1> 

Quantization in ONNX Runtime < https://onnxruntime.ai/docs/performance/quantization.html > 

 
Outline of added and changed specifications relative to ONNX Runtime v1.14.1: 

 QuantType.QInt8 is supported as a data type for activation. 

 An algorithm for zero-point calculation in INT8 calibration was implemented. 

 Debugging of entropy calibration was implemented. 

 The setting of the BiasAdd operation for fully connected layers was changed. 

 The input scaling for the Add operation was changed. 

 Input scale and zero-point for Concat operation was changed. 

 Quantization target exclusion function for each activation function was implemented. 
 

https://github.com/microsoft/onnxruntime/tree/v1.14.1
https://onnxruntime.ai/docs/performance/quantization.html
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1.6 Functional Overview 
The DRP-AI Quantizer provides quantization optimized for the DRP-AI for ONNX-format AI models. 
Quantizing an AI model reduces the size of the model itself, achieving faster inference times. The DRP-AI 
Quantizer also handles accuracy evaluation for quantized models. 
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Object 
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Downloading

Target board

Camera DRP library 
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DRP-AI 
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Figure 1.1   This Product’s Role in the AI Design Process 

 
Note that AI models to run on the next-generation products of the RZ/V2x series always require quantization. 
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1.7 Quantization 
Quantization is the process of reducing the sizes of models by representing parameters of networks such as 
weights with a lower bit width. 

 

After quantization:
8-bit integer format

Before quantization:
32-bit floating-point format

Reducing the size to 
one-fourth of the original size

Weights

Activations

Image of a Network Image of the Compression of 
Weights and Activations

 

Figure 1.2   Schematic View of the Effect of Quantization with This Tool 

 
This tool converts the weight parameters and the activation values of an AI model from 32-bit 
single-precision floating-point values into 8-bit integer values, reducing the size of the model to 
approximately one-fourth of its original size. Note that this tool quantizes activation values as well as weight 
parameters, because the tool performs static quantization conversion. This requires a dedicated dataset for 
use in calibrationNote. See section 3.4.1.1. Furthermore, note that the preprocessing of input data for the 
target AI model must be reflected in the Calibration data reader before quantization. Again, see 
section3.4.1.1. Optional settings for quantization can be specified by adding command line options as 
described in section 3.5. 

 
Note: Calibration is the process of minimizing the loss of accuracy due to quantization through the input of 

multiple data from which the neural network is to actually draw inferences. 
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1.8 Change of Recognition Accuracy Due to Quantization 
The table below lists changes in the accuracy of recognition due to INT8 quantization. The changes are 
negligible. 

 Table 1.4   Accuracy changes before and after INT8 quantization 

AI Facility Classification Object Recognition Segmentation Pose Estimation 

Model Name ResNet18 TinyYOLOv2 YOLOv2 DeepLabV3 HRNET 

Dataset ImageNet VOC VOC CityScapes MMPose 

Accuracy before 
INT8 Quantization 

67.40 % 58.20 % 74.85 % 77.14 % 74.60 % 

Accuracy after INT8 
Quantization 

67.00 % 
(−0.40 %) 

57.90 % 
(−0.30 %) 

74.93 % 
(+0.08 %) 

77.01 % 
(−0.13 %) 

74.50 % 
(−0.10 %) 

 
Note: Quantization is not guaranteed for all models. Also, if the accuracy after INT8 quantization is 

degraded, please refer to Chapter 5 Suppressing Post-quantization Accuracy Degradation . 
 

1.9 Updates in Version 1.01  
In the latest update to version 1.01 of the DRP-AI Quantizer, We have solved the problem of some operators 
such as `maxpool` or `transpose` nodes can not be quantized when they are initial or final layers. 

 
V1.0.0 quantization result 

 
V1.0.1 quantization result 

 

Figure 1.3   In Version v1.01, When the `maxpool` node is the initial or final layer, It will also be quantized 
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2. Setting Up the DRP-AI Quantizer 
For instructions on setting up the DRP-AI Quantizer, please refer to Chapter 3, ‘Installation’ in the DRP-AI 
Translator i8 user manual (Document ID: r20ut5336). 
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3. Using the DRP-AI Quantizer 
This chapter describes how to use the DRP-AI Quantizer to perform a post-training quantization(PTQ).  

3.1 Overview 
The DRP-AI Quantizer performs static quantization conversion for ONNX-format AI models, thus converts 
the activations and the weight and bias parameters of an AI model from 32-bit single-precision floating-point 
values into 8-bit integer values. The quantization requires a dataset for use in calibration as well as a trained 
AI model (an ONNX file). The accuracy of a quantized INT8 ONNX file can be tested by using an inference 
script. 

Chapter 3 is dedicated to the use of the DRP-AI Quantizer, detailing the quantized command line interface 
and Python API interface, as well as describing how to customize the calibration data reader for different 
ONNX format models. This chapter also covers advanced options and available parameters. 

When using DRP-AI Quantizer, you can use either way to implement static quantization of onnx format 
models. If you want to use the Command line interface(CLI) for onnx format model quantization, please refer 
to section 3.2. If you want to use the Python API for onnx format model quantization, please refer to Section 
3.3. 

After understanding how to quantize a model using DRP-AI Quantizer's CLI or PythonAPI, you can move on 
to section 3.3 Quantize a model using your own calibration dataset and section 3.5 DRP-AI Quantizer’s 
advanced options. 

 
Figure 3.1 Reading index for chapter 3 



DRP-AI Quantizer (INT8 Quantization Tool) Version 1.0.1 User's Manual 

R20UT5184EJ0102  Rev.1.02  Page 10 of 38 
February.13.24  

 

3.2 Quantizing in Command line interface(CLI) 
3.2.1 Quantizing with the Use of Sample Data in CLI 

This section describes the procedure for quantization and the testing of accuracy with the included samples. 
The sample data include the two following FLOAT format ONNX files. 

 modA_resnet18.onnx: A PyTorch-trained ONNX file in NCHW format (channels first) 

 modB_resnet18.onnx: A Keras-trained ONNX file in NHWC format (channels last) 
 

 

Figure 3.2   Outline of the Procedure for Using CLI 
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3.2.1.1 Quantizing with the PyTorch-Trained ONNX File 
Quantizing with the use of the PyTorch-trained ONNX file in NCHW format (channels first) as the input file is 
enabled by setting input and output files when run the cli_interface module as a script. In addition, the NCHW 
format (channels first) calibration data reader can be dynamically importeded as a command line option. In 
the following sample commandline, There is a class ‘NCHWDataReader’ class in the file 
nchw_datareader.py, Refer to Table 3.3.2.3 in Section 3.2.2 for more information of the Class 
‘NCHWDataReader’. Also, the mean value and standard deviation can be set as command line options. 

The sample command line is shown in the listing below. 
python3 -m drpai_quantizer.cli_interface ¥ # Invoke the cli_interface module 

 --input_model_path modA_resnet18.onnx¥ # Input: FLOAT format ONNX file 

 --output_model_path modA_resnet18_q.onnx ¥ # Output: INT8 ONNX file 

 --calibrate_dataset ./calibrate_images ¥ 

--datareader_path ./nchw_datareader.py ¥ 

 --norm_mean [0.4914, 0.4822, 0.4465] ¥ 

 --norm_std [0.2023, 0.1994, 0.2010]  

# Dataset for quantization calibration 

# Dynamic import the calibration datareader 

# The normalize mean value  

# The normalize standard deviation 

 

3.2.1.2 Quantizing with the Keras-Trained ONNX File 
Quantizing with the use of the Keras-trained ONNX file in NHWC format (channels last) as the input file is 
enabled by setting input and output files when run the cli_interface module as a script. In addition, the NHWC 
format (channels last) calibration data reader can be dynamically importeded as a command line option. In 
the following sample commandline, There is a class ‘NHWCDataReader’ class in the file 
nhwc_datareader.py, Refer to Table 3.3.2.4 in Section 3.2.2 for more information of the Class 
‘NCHWDataReader’. Also, the mean value and standard deviation can be set as command line options. 

The sample command line is shown in the listing below. 
python3 -m drpai_quantizer.cli_interface ¥ # Invoke the cli_interface module 

 --input_model_path modB_resnet18.onnx¥ # Input: FLOAT format ONNX file 

 --output_model_path modB_resnet18_q.onnx ¥ # Output: INT8 ONNX file 

 --calibrate_dataset ./calibrate_images ¥ 

--datareader_path ./nhwc_datareader.py ¥ 

 --norm_mean [0, 0, 0] ¥ 

 --norm_std [1, 1, 1]  

# Dataset for quantization calibration 

# Dynamic import the calibration datareader 

# The normalize mean value  

# The normalize standard deviation 
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3.2.2 Commandline interface available Options  
 

Table 3.2.2.1 lists the command line options available in invoking the cli_interface module. The default 
setting is applied when an option is not specified. 

 
Table 3.2.2.1   Command-Line Options for the cli_interface module 

Option Abbreviation Default Setting Outline 
--input_model_path — Explicit setting 

required 
Path to the input ONNX model 

--output_model_path — Explicit setting 
required 

Path to the quantized output ONNX 
model 

--calibrate_dataset <path> — ./calibrate_images Dataset path for calibration 
--calibrate_method <value> -cm MinMax Calibration method: MinMax or Entropy 
--datareader_path — Explicit setting 

required 
Setting the shape of the input layer as 
channels last format 

--operate_to_exclude 
<name,…> 

-ex — Non-quantized operation names 
(comma-separated) 
 
Example: --operate_to_exclude 
Softplus,Tanh 

--node_to_exclude <name,…> -exn (Disabled) Node names not subject to quantization 
(comma-separated) 
 
Example: --node_to_exclude 
Concat_264,Concat_285 

--norm_mean  
<mean value> 

— Explicit setting 
required 

Average for preprocessing of calibration 
data 
 

Specify the average value of the three 
input channels to the model in the form 
[val1, val2, val3] 
 
Example: --norm_mean 
[0.4914,0.4822,0.4465] 

--norm_std  
<standard deviation> 

— Explicit setting 
required 

Standard deviation for preprocessing of 
calibration data 
 

Specify the standard deviation value of 
the three input channels to the model in 
the form [val1, val2, val3]  
 
Example: --norm_std 
[0.2023,0.1994,0.2010] 

--skip_preprocess — (Disabled) Skip the quantization preprocess before 
quantize the model.  
If encounter the error message such like  
`Exception: Pre-processing 
before quantization was Failed.` 
when quantizing a model, try re-quantize 
the target model with this option. 
 
Example: --skip_prerprocess 
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--preprocess_mode -ppm default Mode for quantization preprocessing. 
The preprocess_model must be set as 
default. 
Example: --preprocess_mode default 

--preprocessed_model_output -pmo (Disabled) Save the quantize preprocessed mode. 
 
Example: --preprocessed_model_output 

--tvm — (Disabled) Quantization for tvm.  
It will call the TVMDataReader 
automatically when using this option. So 
when using this option, do not set the 
--datareader_path 
option. 
 
Example: --tvm 

Non-public advanced options  ―  ― Omit "--" when setting option. 
Example: optimize_model True 
(It will be described in detail in section 
3.5.) 



DRP-AI Quantizer (INT8 Quantization Tool) Version 1.0.1 User's Manual 

R20UT5184EJ0102  Rev.1.02  Page 14 of 38 
February.13.24  

 

3.3 Quantizing in Python API 
3.3.1 Quantizing with the Use of Sample Data in Python API 

This section describes the procedure for quantization and the testing of accuracy with the included samples. 
The sample data include the two following FLOAT format ONNX files. 

 modA_resnet18.onnx: A PyTorch-trained ONNX file in NCHW format (channels first) 

 modB_resnet18.onnx: A Keras-trained ONNX file in NHWC format (channels last) 

 

Figure 3.3   Outline of the Procedure for Using Python API 
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3.3.1.1 Quantizing with the PyTorch-Trained ONNX File 
The sample usage code is shown as below: 

 Step1. Instantiate the sample NCHW(channel first) calibration data reader. 

The `NCHWDataReader` class is utilized to read the calibration data in the NCHW format. It requires the 
following parameters: 
    - The path to the calibration images: `./calibration_data/calibrate_images/` 
    - Mean values for normalization: `[0.4914, 0.4822, 0.4465]` 
    - Standard deviation for normalization: `[0.2023, 0.1994, 0.2010]` 
    - The path to the input ONNX model trained with PyTorch: `./modA_resnet18.onnx` 
Refer to Table 3.3.2.3 in Section 3.2.2 for more information of the Class ‘NCHWDataReader’. 
 
nchw_datareader=NCHWDataReader('./calibration_data/calibrate_images', ¥ 

[0.4914, 0.4822, 0.4465], ¥ 
[0.2023, 0.1994, 0.2010], ¥ 
'./modA_resnet18.onnx') 

 

 Step2. Call of the do_prerpocess() API to do the quantization preprocess. 

The `do_preprocess` function preprocesses the input model. It takes the following parameters: 
    - The path to the input ONNX model: `./modA_resnet18.onnx` 
    - The path for the preprocessed model's output: `preprocessed_modA_model.onnx` 
    - The preprocessing mode, which is set to `default` in this instance. 
 
do_preprocess(input_model_path='./modA_resnet18.onnx',¥ 
                 preprocessed_model_output='preprocessed_modA_model.onnx',¥ 
                 preprocess_mode='default') 

 

 Step3. Call of the quantize_interface() API to quantize the preprocessed model. 

The `quantize_interface` function is used to perform model quantization. The function is provided with: 
    - The path to the preprocessed model: `preprocessed_modA_model.onnx` 
    - The desired output path for the quantized model: `modA_resnet18_q.onnx` 
    - The calibration method, in this case, `CalibrationMethod.MinMax` indicating the minmax-based 
calibration method. 
    - The data reader (`nchw_datareader`), which has been set up earlier to read the calibration data in 
the NCHW format. 
 
quantize_interface(input_model_path='preprocessed_modA_model.onnx', ¥ 
                       output_model_path='modA_resnet18_q.onnx', ¥ 
                       calibrate_method=CalibrationMethod.MinMax, ¥ 
                       datareader=nchw_datareader) 
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3.3.1.2 Quantizing with the Keras-Trained ONNX File 
The sample usage code is shown as below: 

 Step1. Instantiate the sample NHWC(channel last) calibration data reader. 

The `NHWCDataReader` class is utilized to read the calibration data in the NHWC format. It requires the 
following parameters: 
    - The path to the calibration images: `./calibration_data/calibrate_images/` 
    - Mean values for normalization: `[0,0,0]` 
    - Standard deviation for normalization: `[1,1,1]` 
    - The path to the input ONNX model trained with Keras: `./modB_resnet18.onnx` 
Refer to Table 3.3.2.4 in Section 3.2.2 for more information of the Class ‘NHWCDataReader’. 
 
nchw_datareader=NHWCDataReader('./calibration_data/calibrate_images', ¥ 

[0, 0, 0], ¥ 
[1, 1, 1], ¥ 
'./modB_resnet18.onnx') 

 

 Step2. Call of the do_prerpocess() API to do the quantization preprocess. 

The `do_preprocess` function preprocesses the input model. It takes the following parameters: 
    - The path to the input ONNX model: `./modB_resnet18.onnx` 
    - The path for the preprocessed model's output: `preprocessed_modB_model.onnx` 
    - The preprocessing mode, which is set to `default` in this instance. 
 
do_preprocess(input_model_path='./modB_resnet18.onnx',¥ 
                 preprocessed_model_output='preprocessed_modB_model.onnx',¥ 
                 preprocess_mode='default') 

 

 Step3. Call of the quantize_interface() API to quantize the preprocessed model. 

The `quantize_interface` function is used to perform model quantization. The function is provided with: 
    - The path to the preprocessed model: `preprocessed_modB_model.onnx` 
    - The desired output path for the quantized model: `modB_resnet18_q.onnx` 
    - The calibration method, in this case, `CalibrationMethod.MinMax` indicating the minmax-based 
calibration method. 
    - The data reader (`nhwc_datareader`), which has been set up earlier to read the calibration data in 
the NHWC format. 
 

quantize_interface(input_model_path='preprocessed_modB_model.onnx', ¥ 
                       output_model_path='modB_resnet18_q.onnx', ¥ 
                       calibrate_method=CalibrationMethod.MinMax, ¥ 
                       datareader=nhwc_datareader) 
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3.3.2 Python API available functions table and API reference 
 Table3.3.2.1 lists of the functions for the PythonAPI 

 

The following are the API References for the available functions. 

 Table 3.3.2.1 Fucntion ‘do_preprocess()’ API reference 

[Overview] A function to preprocess an ONNX model given a set of arguments and 
conditions. 

  

[Function/Class Name] do_preprocess() 

  

[Calling format]  do_preprocess (input_model_path : str, 
               preprocessed_model_output : str, 
               do_symbolic_shape_inference : bool, 
               do_onnx_shape_inference : bool,  
               do_optimization : bool, 
               skip_preprocess : bool, 
               verbose : int, 
               preprocess_mode : str) 

  

[Argument] input_model_path : str, Path to the input target ONNX model. 

preprocessed_model_output : 
str 

Path where the preprocessed model will be 
saved. 

do_symbolic_shape_inference : 
bool 

Flag to perform symbolic shape inference. 

Symbolic shape inference is most effective 
with transformer based models. Skip perform 
the symbolic shape inferences may reduce 
the effectiveness of quantization, as a tensor 
with unknown shape can not be quantized. 
Default is True. 

do_onnx_shape_inference : 
bool 

Flag to perform ONNX shape inference. 

Skip perform the onnx shape inferences may 
reduce the effectiveness of quantization. 
Default is True. 

do_optimization : bool Flag to perform optimization on the model. 

Skip perform this may result in ONNX shape 
inference failure for some models. Default is 
True. 

skip_preprocess : bool Flag to skip the quantization preprocess 
step. 

Class or Function 
Name 

Description 

‘do_preprocess’ A function to preprocess an ONNX model given a set of arguments and conditions. 
‘quantize_interface’ A function that interfaces with the quantization process of an ONNX model. 
‘NCHWDataReader’ A class designed for calibrating ONNX models, specifically those expecting input in 

the NCHW (Channel-First) format. 
‘NHWCDataReader’ A class designed for calibrating ONNX models, specifically those expecting input in 

the NHWC (Channel-Last) format. 
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Setting this parameter to True will skip all 
quantization preprocessing (equivalent to 
setting the 'do_symbolic_shape_inference', 
'do_onnx_shape_inference', 
'do_optimization' parameters to False at the 
same time) Default is False. 

verbose : int Level of verbosity. 

Logs detailed info of inference, 0: turn off, 1: 
warnings, 3: detailed. Default is 1. 

preprocess_mode: str Specifies the mode of preprocessing. 

The choice of mode must be set as  
“default” when executing Post training 
quantization. 

Default is “default”. 

  

[Returns] None 

  

[Remarks] This function does not necessarily need to be called when performing 
quantization. Some models may get an error when performing symbolic shape 
inference.  

When it is not possible to perform any of the quantization preprocessing step 
due to model’s structure or choosing not to perform quantization preprocessing, 
you can choose not to execute this function and perform quantization directly.  

 
 Table 3.3.2.2 Fucntion ‘quantize_interface()’ API reference 

[Overview] A function that interfaces with the quantization process of an ONNX model. 

  

[Function/Class Name] quantize_interface 

  

[Calling format]  Quantize_interface (input_model_path : str, 
                   output_model_path : str, 
                   datareader : Instance of CalibrationReader,  
                   calibrate_method : str or Calibratemethod, 
                   operate_to_exclude : str, 
                   node_to_exclude : str) 

  

[Argument] input_model_path : str, Path to the input target ONNX model. 

Output_model_path : str Path where the quantized model will be 
saved. 

Datareader : Instance of 
CalibrationReader 

The data reader to use for calibration. 

An instance of a data reader used for  
model calibration. Default is None. 

Calibrate_method : str or 
Calibratemethod 

The method of calibration to apply. 

Can be an instance of CalibrationMethod 
enum or a string. Default is 
CalibrationMethod.MinMax. 
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operate_to_exclude : str Operation types to exclude from 
quantization. 

Comma-separated string of operation types  
to exclude from quantization. Default is 
None. 

Node_to_exclude : str Specific nodes to exclude from quantization. 

Comma-separated string of node names to  
exclude from quantization. Default is None. 

  

[Returns] None 

  

[Remarks] The function allows for per-channel quantization and supports MinMax and 
Entropy calibration methods. The choice of calibration data and calibration 
method can significantly impact the model’s accuracy and performance. 

 
 Table 3.3.2.3 Class ‘NCHWDataReader()’ API reference 

[Overview] A class designed for calibrating ONNX models, specifically those expecting 
input in the NCHW (Channel-First) format. It extends the functionality of the 
CalibrationDataReader class. This class is tailored for preprocessing images for 
model calibration, which includes tasks like normalization, resizing, and 
converting data into the NCHW format. 

  

[Function/Class Name] NCHWDataReader() 

  

[Calling format] NCHWDataReader(calibration_image_folder, norm_mean, norm_std, 
augmented_model_path) 

  

[Argument] calibration_image_folder (str): The path to the directory containing the 
images used for calibration. 

Norm_mean (list of floats): Normalization means for each color channel 
(R, G, B). It should be a list of three float 
values. 

Norm_std (list of floats): Standard deviations for normalization of 
each color channel (R, G, B). This should 
also be a list of three float values. 

Augmented_model_path (str): The file path to the augmented ONNX model 
that will be used for calibration. 

  

[Returns] None 

  

[Remarks] Constraints in model input format: This class is specifically tailored for 
processing data in the NCHW format (Channels, Height, Width). It’s crucial for 
models that require inputs in this channel-first format. 

Constraints in File Formats: The class can process images in common file 
formats like JPG, PNG, and BMP. 
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 Table 3.3.2.4 Class ‘NHWCDataReader()’ API reference 

[Overview] A class designed for calibrating ONNX models, specifically those expecting 
input in the NHWC (Channel-Last) format. It extends the functionality of the 
CalibrationDataReader class. This class is tailored for preprocessing images for 
model calibration, which includes tasks like normalization, resizing, and 
converting data into the NHWC format. 

  

[Function/Class Name] NHWCDataReader() 

  

[Calling format] NHWCDataReader(calibration_image_folder, norm_mean, norm_std, 
augmented_model_path) 

  

[Argument] calibration_image_folder (str): The path to the directory containing the 
images used for calibration. 

Norm_mean (list of floats): Normalization means for each color channel 
(R, G, B). It should be a list of three float 
values. 

Norm_std (list of floats): Standard deviations for normalization of 
each color channel (R, G, B). This should 
also be a list of three float values. 

Augmented_model_path (str): The file path to the augmented ONNX model 
that will be used for calibration. 

  

[Returns] None 

  

[Remarks] Constraints in model input format: This class is specifically tailored for 
processing data in the NHWC format (Height, Width, Channels). It’s crucial for 
models that require inputs in this channel-last format. 

Constraints in File Formats: The class can process images in common file 
formats like JPG, PNG, and BMP. 
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3.3.3 Python API interface available parameters 
Table3.3.3.1 ~ Table3.3.3.3 lists the Python API interface available parameter when calling corresponding 
DRP-AI Quantizer module. The default setting is applied when an parameter is not specified. 

 Table 3.3.3.1 PythonAPI parameters for the DataReader instantiation 

 

 Table 3.3.3.2 PythonAPI parameters for the call function of ‘do_preprocess()’ module 

#particular note：The function of the skip_preprocess parameter in do_preprocess() is not the same as the 
function of the skip_preprocess option in CLI. CLI’s skip_prerpocess option represent skip all the process in 
do_preprocess(), which means that it will not call the do_preprocess() function.  

Parameter Data_ty
pe 

Default 
value 

mandatory 
parameter 

Outline 

calibration_image_ 
folder 

str None True Path to the calibration image folder 

norm_mean list None True List of mean values for normalization, must be 
in the format [R, G, B]. 

norm_std list None True List of standard deviations for normalization, 
must be in the format [R, G, B]. 

augmented_model_ 
path 

str None True Path to the ONNX model file which needs to 
be quantized 

Parameter Data_ty
pe 

Default 
value 

mandatory 
parameter 

Outline 

input_model_path str None True Path to the input ONNX model 
preprocessed_model_ 
output 

str None True Path to the preprocessed output ONNX model 

do_symbolic_shape_ 
inference 

bool True False Whether do symbolic shape inference during 
quantization preprocessing 

do_onnx_shape_ 
inference 

bool True False Whether do onnx shape inference during 
quantization preprocessing 

do_optimization bool True False Whether do graph optimization during 
quantization preprocessing 

skip_preprocess  bool False False Skip the above three quantization 
preprocessing 

verbose int 0 False Level of verbosity. Higher values indicate 
more detailed logging. 

Preprocess_mode str None True Specifies the type of model (Choice: 
Set as ‘default’ for post-training 
quantization(PTQ) models. 

kwargs  ―  ―  ― Additional keyword arguments for specifying 
quantization properties. 
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 Table 3.3.3.3 PythonAPI parameters for the call function of ‘quantize_interface()’ module 

 

Parameter Data_type Default 
value 

mandatory 
parameter 

Outline 

input_model_path str None True Path to the ONNX model file which needs to be 
quantized or the ONNX model file 
preprocessed by the do_preprocess() module. 

output_model_path str None True Path where the quantized model will be saved. 
datareader A instance of 

CalibrationD
ataReader 

None True A instance of a nchw or nhwc datareader 

calibrate_method CalibrationM
ethod 

Calibration
Method.Mi
nMax 

False The calibration method used for quantization. 
Choice can be set as 
CalibrationMethod.MinMax or 
CalibrationMethod.Entropy 

operate_to_exclude str None False Operations to exclude during quantization. 
node_to_exclude str None False Nodes to exclude during quantization. 
kwargs  ―  ―  ― Additional keyword arguments for specifying 

quantization properties. 
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3.4 Quantizing with the User’s Calibration Dataset 
Quantizing a model from FP32 to INT8 requires calibration with representative dataset samples to maintain 
the model's accuracy. To perform this calibration, you need to implement a data reader that feeds data to 
the model in a format it expects. This part will walk you through the process of creating a custom 
CalibrationDataReader for ONNX model quantization. We have already produced two files 
nchw_datareader.py and nhwc_datareader.py which contains the CalibrationDataReader classes 
corresponds respectively to PyTorch-Trained ONNX files and Keras-Trained ONNX files. 
 
Since the model has a wide variety of data pre-processing processes, the appropriate data pre-processing 
should also be covered in the calibration data reader to ensure the appropriateness of the calibration data. 
The following sections will guide you how to create a calibration data reader which can be applied to 
DRP-AI Quantizer. 

3.4.1 Preparation 
Quantizing with a user’s dataset requires the following four steps to input data to user’s AI model and 
perform calibration during the conversion. The items framed by red round-cornered rectangles in Figure3.3 
must be prepared or modified.  

1. Prepare user’s ONNX model files. 

2. Prepare user’s data for calibration. 

3. Implement the preprocessing of input data in the sample nchw_datareader.py / nchw_datareader.py or  

user’s customized calibration datareader.py file. Specification restrictions on customizing the calibration 
data reader will be introduces in this section. 

4. Modify the inference script for testing accuracy. See section 0. 
 

 

Figure 3.4   Contents in the Sample Data to be Modified with User’s Data  
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3.4.1.1 Detailed Process of Preparing the User’s Data for Calibration (2 of Figure3.3) 
Calibration requires fewer data than training an AI model because the data are only used to calculate the 
range of the output values from each layer in the network. The first thing we need to be aware of is 
Calibration data should come from the same source or have similar characteristics as the training data. For 
instance, if your model is trained on the COCO dataset, use a subset of COCO for calibration.  

The preparation of a calibration dataset for quantization is a balance between the amount of data and the 
distribution of data.  

It is commonly recommended to use between 100 and 500 images for calibration data. However, the actual 
number should be determined based on the number of classes in your dataset. Please follow the examples 
below for reference when preparing your calibration data: 

 If dataset has class number, pick up each class’s 20-50 representative data. For the dataset has over 
100 classes, pick up fewer images as following examples. 

 For datasets with 1000 classes, prepare 1 image for each class, resulting in a total of 1000 images. 

 For datasets with 100 classes, prepare 2 to 5 images for each class, resulting in a total of 200 to 500 
images. 

 For datasets with 10 classes, prepare 20 to 50 images for each class, resulting in a total of 200 to 
500 images. 

 For datasets with a single class, prepare 20 to 50 images for the class, resulting in a total of 20 to 50 
images. 

 
Figure3.5   calibration data preparation when dataset has class concept 

 If dataset does not have class number such as those are used for pose estimation, prepare a random 
selection of 100 to 500 images. 

 
Figure3.6   calibration data preparation when dataset does not have class concept 

Use the prepared data for calibration according to either of the following procedures:  

1. Store the data in the calibrate_images folder. 

2. For CLI, Specify the folder including the data by using the “--calibrate_dataset” option described in 
section 3.2.1.1 and section 3.2.1.2. 
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For Python API, Specify the folder including the data by setting the “calibrateion_image_folder” 
parameters when instantiate the corresponding calibration data reader option described in the section 
3.3.1 and section 3.3.2’s step1. 

3.4.1.2 Detailed Process of Implementing the CalibrationDataReader Script (3 of Figure3.3 )) 
The CalibrationDataReader scripts(nchw_datareader.py and nhwc_datareader.py) in the DRP-AI Quantizer 
can be used directly. If the input-data pre-processing of the target model is different from the pre-processing 
in the script, you need to edit the pre-processing part of the script or make a model-specific 
CalibrationDataReader. 

In the produced nchw_datareader.py and nhwc-datareader.py, there is already defined a preprocess_func() 
function which can cope with most of the input data preprocessing, but when there are some special 
preprocessing needs, It can be realized by modifying this function or defining new functions to implement the 
appropriate preprocessing. 

Implement Data Preprocessing 

The Quantization and testing of accuracy in the produced CalibrationDataReader scripts(The 
nchw_datareader.py and nhwc_datareader.py) are performed with a CIFAR-10 dataset. Using a different 
dataset requires editing of the CalibrationDataReader script. Note that using a dataset preprocessed in 
training particularly requires preprocessing of the quantization and inference scripts. In the included 
CalibrationDataReader script, normalization of input data levels is performed using the values specified in 
the norm_mean and norm_std options as preprocessing for the data set. 

The code snippet within the red frame in Figure 3.5 is the input data pre-processing. If padding or other 
processing other than normalization is required, please add additional processing in the code snippet within 
the red frame or customize your own CalibrationDataReader script. 

Figure 3.5   Input data pre-processing code snippet in nchw_datareader.py 

After completing the customization of CalibrationDataReader, Continue using DRP-AI Quantizer for model 
quantization, please refer to section3.2 or section3.3 for quantization using CLI or Python API. 

3.5 Advanced Options for DRP-AI Quatnizer 
This section of the manual is dedicated to the advanced, non-public options available in the DRP-AI 
Quantizer command-line interface and PythonAPI. These options provide more granular control and 
customization for users who require specific functionalities beyond the standard toolset. It's important to note 
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that these options are intended for advanced users who have a thorough understanding of the tool and its 
workings. 

Non-public options are additional arguments that can be passed to the DRP-AI Quantizer command-line 
interface. These options are not listed in the standard help output (--help) and are meant for specific, 
advanced use cases. Non-public options are passed after specifying all public options. They are key-value 
pairs provided in a sequence. It's essential to ensure that each option key is followed by its corresponding 
value. 

3.5.1 Use Cases of Advanced Options 
The following is an example of using one of the advanced option exclude_act_func_dir:  

The exclude_act_func_dir non-public option allows users to specify a csv file containing activation functions 
that should not be quantized. This is particularly useful when certain custom or specific activation functions 
need to be excluded from the quantization process. 

The csv file should be written in the following format. 

・Encoding format 

Character encoding: UTF-8 

Newline code: LF 

・Format of activation functions to be excluded from quantization target 

Specify one pattern of activation functions to be excluded from quantization per line. The pattern lists 
the ONNX operators that make up the activation function in sequential order from the input side. In 
addition, by adding the special character "^" to the beginning of the ONNX operator, the ONNX operator 
can be quantized.  

Example: 
Mish 

Softplus,Tanh,^Mul 

Exp,Add,Log,Tanh,^Mul 

In this example, the following three activation functions are not quantized. However, since "^" is added 
to the Mul operator included in the patterns (2) and (3), it is subject to quantization (See Figure3.5, 
Figure3.6.)  

(1) Mish 

(2) Softplus → Thanh → Mul 

(3) Exp → Add → Log → Tanh → Mul  
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Figure3.5 Nodes that are not subject to quantization in pattern (2) (Surrounded by Red Round-Cornered 

Rectangles) 

 
Figure 3.1 Nodes that are not subject to quantization in pattern (3) (Surrounded by Red Round-Cornered 

Rectangles) 
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After understanding how to determine nodes that are not subject to quantization and write nodes to a csv file, 
we will use CLI with PYTHONAPI to quantize the model using this advanced option. The following are the 
example command line and sample code snippet: 

CLI example: 
python3 -m drpai_quantizer.cli_interface ¥ # Invoke the cli_interface module 

 --input_model_path <path_to_target_onnx_file>¥ # Input: FLOAT format ONNX file 

 --output_model_path <path_to_output_onnx_file> ¥ # Output: INT8 ONNX file 

 --calibrate_dataset <path_to_calibration_data>¥ 

--datareader_path <path_to_calibration_datareader> ¥ 

 --norm_mean <mean_value> ¥ 

 --norm_std <standard_deviation> ¥ 

 exclude_act_func_dir <path_to_created_csv_file> 

# Dataset for quantization calibration 

# Dynamic import the calibration datareader 

# The normalize mean value  

# The normalize standard deviation 

# Use the csv file to labeling nodes that do not need to be quantized  

 

PythonAPI example: 

nchw_datareader=NCHWDataReader('<path_to_calibration_dataset>', ¥ 
<mean_value>, ¥ 
<standard_deviation>, ¥ 
'<path_to_target_onnx_file>') 

do_preprocess(input_model_path='<path_to_target_onnx_file>',¥ 
                 preprocessed_model_output='<path_to_preprocessed_onnx_file>',¥ 

                   preprocess_mode='<preprocess_mode>') 

quantize_interface(input_model_path='<path_to_preprocessed_onnx_file>', ¥ 
                       output_model_path='<path_to_output_onnx_file>', ¥ 
                       calibrate_method=CalibrationMethod.<quantization_method>, ¥ 

                         datareader=nchw_datareader, ¥ 

                         exclude_act_func_dir='<path_to_created_csv_file>') 
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4. Testing Accuracy Obtained through Inference 

4.1 Testing Accuracy with Sample Data 
4.1.1 Testing Accuracy with the PyTorch-Quantized ONNX File 

Testing the accuracy by using the PyTorch-quantized ONNX file in NCHW format (channels first) is enabled 
by setting the --nchw option as well as name of the input model file in the sample inference script as shown 
below. 

python3 inference_resnet.py ––nchw modA_resnet18_q.onnx 

 

4.1.2 Testing Accuracy with the Keras-Quantized ONNX File 
Testing the accuracy by using the Keras-quantized ONNX file in NHWC format (channels last) requires 
setting the --nhwc option as well as name of the input model file in the sample inference script as shown 
below. 
python3 inference_resnet.py ––nhwc modB_resnet18_q.onnx 

 

4.2 Testing Accuracy with the User’s Dataset 
(Detailed Process of Modifying the Inference Script for Testing Accuracy (4 of 1.1.1) 

Quantization and testing of accuracy in the included inference_resnet.py script is performed with a CIFAR-10 
dataset. Using a different dataset requires editing of the inference script. Note that using a preprocessed 
dataset in a trained script particularly requires preprocessing of both the inference script and the quantization 
script. The input data levels in the included inference script are quantized by using a PyTorch-trained ONNX 
file as a preprocessing example for the dataset as shown in the listing below. 

 
Furthermore, CIFAR-10 images are loaded in the inference script as shown in the listing below. 

The examples of quantizing and loading shown above are for reference for preprocessing in testing the 
accuracy with the user’s dataset. 

A preprocessing example for the dataset in the inference_resnet.py file: 
transform_test = transforms.Compose([ 
   transforms.ToTensor(), 
   transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), 
]) 

trainset = torchvision.datasets.CIFAR10(root='./', train=True, 
                                            download=True, transform=transform_train) 
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1, 
                                             shuffle=True, num_workers=2) 
 
testset = torchvision.datasets.CIFAR10(root='./', train=False, 
                                           download=True, transform=transform_test) 
 
testloader = torch.utils.data.DataLoader(testset, batch_size=1, 
                                             shuffle=False, num_workers=2) 
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4.3 Command-Line Options for the Sample Inference Script 
lists the command-line options available in running the inference_resnet.py file as the sample inference script. 
The default setting is applied when an option is not specified. 

Table 4.1   Command-Line Options for the inference_resnet.py File 

Option Abbreviation Default Setting Outline 
--nhwc — (Disabled)  Setting the shape of the input layer as 

channels last format 
--nchw — (Disabled) Setting the shape of the input layer as 

channels first format 
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5. Suppressing Post-quantization Accuracy Degradation 
This chapter describes some examples of methods to prevent accuracy degradation after quantization. If the 
accuracy is significantly lower than before quantization, please refer to the following for confirmation. 

Note: The recommended measures are not guaranteed to always suppress unacceptable deterioration of 
the accuracy. 

 

5.1 Basic Institutional Deterioration Control Methods 
The following is a basic list of items to be checked. 

 

 Confirming that the model is quantizable 
Note: Quantization is not guaranteed for all models 

 Using the --calibrate_method option to switch between the MinMax and Entropy calibration methods 

 Confirming that the data used in training or testing is quantized 

 Confirming that the number or composition of data for use in calibration is appropriate. 

 An error may occur during quantization process with the Entropy specified to the --calibrate_method 
option. Please reduce the number of calibration data and perform quantization again. 

 Try to increase or decrease the number of calibration data. 

 Try to replace the composition of calibration data. 

 Confirming that the implementation of preprocessing in the corresponding training or testing with the use 
of the quantization and inference scripts. 

 

5.2 How to Suppress Accuracy Degradation in Specific Models Such as YOLOv4 
and YOLOv5 

 

5.2.1 Excluding Specific Activation Functions from Quantization 
The --exclude_operate option can be used to exclude operations that comprise the activation function from 
quantization, thereby minimizing precision degradation. 
 

Example: In the case of YOLOv4 
 

If the operations that make up the activation function, the Mish function, are exp,add,log,tanh, specify 
exp,add,log,tanh in the --exclude_operate option (in no particular order) as in the following command to 
exclude them from quantization. 

 

python3 -m drpai_quantizer.cli_interface ¥ 
           --input_model_path yolov4.onnx ¥ 
           --output_model_path yolov4_q.onnx ¥ 
           --calibrate_dataset ./calibrate_images ¥ 
           --exclude_operate exp,add,log,tanh 

 

If the operations that make up the Mish function are softplus,tanh, specify softplus,tanh in the 
--exclude_operate option. 
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A more advanced method of specification is to use the exclude_act_func_dir option. For details, see 3.5.1 
the advanced options in DRP-AI Quantizer. 

 
Figure 5.1   Operations exp,add,log,tanh Nodes that Make Up the Mish Function in YOLOv4  

(Surrounded by Red Round-Cornered Rectangles) 
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Figure 5.2   Operation softplus,tanh Node that Constitutes the Mish Function in YOLOv4  

(Surrounded by Red Round-Cornered Rectangles) 
 

Table 5.1   Actual Accuracy When YOLOv4 is Quantized Using the Methods Described in This 
Chapter 

Conditions Baseline mAP IoU 0.5 

Number of calibration data: 10 

Calibration method: MinMax 

49.9% 49.8%(0.1% degradation) 

 

Example: In the case of MobileNetV2 or DeepLabV3 
 

For networks that use RELU6 as the activation function, such as MobileNetV2 and DeepLabV3, RELU6 is 
excluded from quantization. However, since "ReLU6" is replaced by the "Clip" operation in the ONNX file, 
"Clip" is actually excluded from quantization as in the following command. 

 

python3 -m drpai_quantizer.cli_interface ¥   

           --input_model_path model.onnx ¥ 

           --output_model_path model _q.onnx ¥ 

           --calibrate_dataset ./calibrate_images ¥ 

           --exclude_operate clip 
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5.2.2 Exclude a Post Processing of a Neural Network from Quantization 
Specifically, the following procedure can be used to exclude post-processing from the target to suppress the 
degradation of accuracy. 
 
1. Check all the node names of the post-processing to be excluded from quantization on the ONNX file. 

It is convenient to check the node names using an external tool*. 
*Netron (https://github.com/lutzroeder/netron) is one example 

2. Add the names of the non-quantizing nodes in a list then concatenate into a Single String, Finally use the 
PythonAPI interface to execute quantization. 

 
postprocessing_nodes = ["Reshape_261",…<Enumerate node names to be excluded from 
quantization>] 
postprocessing_nodes_exclude = ",".join(postprocessing_nodes) 
 
nchw_datareader = NCHWDataReader('<path_to_calibration_dataset>', ¥ 

<mean_value>, ¥ 
<standard_deviation>, ¥ 
'<path_to_target_onnx_file>') 

do_preprocess(input_model_path ='<path_to_target_onnx_file>',¥ 
               preprocessed_model_output ='<path_to_preprocessed_onnx_file>',¥ 

                 preprocess_mode ='<preprocess_mode>') 

quantize_interface(input_model_path='<path_to_preprocessed_onnx_file>', ¥ 
                     output_model_path ='<path_to_output_onnx_file>', ¥ 
                     calibrate_method = CalibrationMethod.<quantization_method>, ¥ 

                       datareader = nchw_datareader 
                       node_to_exclude = postprocessing_nodes_exclude  

https://github.com/lutzroeder/netron
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Example: In case of YOLOv5n6 
 
The nodes circled in red in the figure below are the nodes that perform post-processing of the neural network. 
 

 
Figure 5.3   YOLOv5n6 Post-processing Node (Surrounded by Red Round-Cornered Rectangles) 
 

The specific names of the nodes for post-processing are as follows. 

 

"Reshape_261", "Reshape_280", "Reshape_299", "Reshape_318", "Concat_277", "Concat_296", "Concat_315", 

"Concat_334", "Reshape_278", "Reshape_297", "Reshape_316", "Reshape_335", "Concat_336", "Split_264", 

"Split_283", "Split_302", "Split_321", "Mul_266", "Mul_272", "Mul_285", "Mul_291", "Mul_304", "Mul_310", 

"Mul_323", "Mul_329", "Add_268", "Pow_274", "Add_287", "Pow_293", "Add_306", "Pow_312", "Add_325", 

"Pow_331", "Mul_270", "Mul_276", "Mul_289", "Mul_295", "Mul_308", "Mul_314", "Mul_327", "Mul_333", 

"Transpose_262", "Transpose_281", "Transpose_300", "Transpose_319", "Sigmoid_263", "Sigmoid_282", 

"Sigmoid_301", "Sigmoid_320" 
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Table 5.2   Actual Accuracy When YOLOv5n6 is Quantized Using the Methods Described in This 
Chapter. 

Conditions Baseline mAP IoU 0.5 

Number of calibration data: 30 

Calibration method: Entropy 

54.2% 53.1(1.1% degradation) 
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6. Usage Notes 
This section gives notes on the usage of the DRP-AI Quantizer. 

 Installing the software in the required version of this tool will overwrite the existing software if any is 
present. Therefore, confirm that the installation will not affect other software that is in use. 

 The development of this tool was based on ONNX Runtime v1.14.1, so the tool provides features in 
accord with the quantization in ONNX Runtime along with the changed or added features. 

 The opset version available for input ONNX files is 12.  

 The sample inference script includes processing to download a CIFAR-10 dataset from the 
torchvision.datasets. This requires additional time for downloading in the first round of inference. 

 When Error occurs, refer to the following solutions: 

 Error Messages 1: `Exception: Pre-processing before quantization was Failed.` 

Try re-quantizing the target model using the command line option "-skip_preprocess" or skip 
calling the "do_preprocess()" API when quantizing a model in PYTHONAPI. 

 Error Messages 2: `abort – cause abnormal process termination` or `killed`(the task 
been killed) when executing entropy quantization. 

Reduce the amount of calibration data.  

Entropy quantization typically involves calculating histograms or distributions of data, which can be 
memory-intensive, especially if the dataset is large or the histograms are high resolution.  

Take the provided “nchw_datareader.py” as an example, the following Figure6.1 is the code snippet 
of NCHWDataReader class, The `size_limit` attribute in the class determines how many 
images from the calibration dataset are used. You can adjust the `size_limit` attribute of the 
NCHWDataReader class to control the amount of calibration data used during the quantization 
process. 

 
Figure 6.1   Code snippet of nchw_datareader.py 
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