To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RA78K/ 1
ASSEMBLER PACKAGE
USER’S MANUAL for LANGUAGE

NEC Corporation

Errata

The followings are corrections in the RA7BK/I Assembler Package User'’s Manual

for Language:

Page For Read
i, [Target Device] uPD78122,uPD78124 ,uPD78P124 Expurgation
iv, "Assembler related” EEM- EEU-1205
iv, "Debugger related” IE-78120-R ~ (PC-D0OS) based Expurgation
EEM-1047 Expurgation
1-14,Takble 1-1 PC-9800 series IBM PC
MS-DOS PC-DOS
A-15-17 Table C-2 Expurgation
A-18,line 3-~4 For the uPD78122 -~ Expurgation

to read as "addrle”
A-28,Last 0110 0601 0001 0110

A register L register

L register A register

RA78K/ 1
ASSEMBLER PACKAGE
USER’S MANUAL for LANGUAGE

NEC Corporation

©® NEC Corporation 1988

INTRODUCTION

This manual is designed to facilitate correct understanding of the
basic functions of each program in the RA78K/I Assembler Package
(hereinafter referred to as "this package or the package") and
the methods of describing source programs for the RA78K/I,

This manual does not cover how to operate the respective programs
of the RA78K/I assembler package. Therefore, after you have
comprehended the contents of this manual, read the RA78K/I
Assembler Package User's Manual for Operation (hereinafter
referred to as "the Operation Manual") to operate each program in
the assembler package.

This manual is applicable to the package product versions V2.0
and upwards of the RA78K/I assembler package.

Assembler V2.0 or up

RA7TBK/I Assembler Package +— Linker V2.0 or up
h

Package version V2.0 or up.
’ Locater V2.0 or up

[Target Devices])
The software of the following microcomputers can be developed
with this package:

o uPD78112, uPD78P112

o uPD78122, uPD78124, uPD78P124

[Readers of Manuall
Although this manual is intended for those who are familiar with

the functions and instructions of the microcomputer subject to
software development, the manual can also be used by those who use

an assembler program for the first time,

[Organization of Manual]

This manual consists of the following six chapters and appendixes:

Chapter 1 - General '

Outlines the functions of this package including the role of the
package in microcomputer development.

Chapter 2 - How to Describe Source Programs

Describes the ggneral rules applidabie to the description of a
source proéram such as the basic configuration and description
format of source programs, and expressions and operators of the
assembler. |

Chapters 3 & 4 Directives and Control Instructions
Details the description format, function, and use of each of the
assembler directives and control instructions, including

application examples.

Chapter 5 - Macros]
Outlines macro functions such as macrodefintion, macro reference
(macrocall), and macroexpansion.

Macro directives are explained in Chapter 3.

Chapter 6 - Product Utilization
Introduces some measures recommended for effective utilization
of this package.

Appendixes

Contain a list of instructions (uCOM-78K/I), a list of directives

and control instructions, a list of reserved words, a list of

hints on use and restrictions, etc.

NOTE: The uCOM-78K/I instruction set is not detailed in this
manual. For these instructions, refer to the user's manual

of each microcomputer subject to software development.

ii

[Recommended Usage of Manual]
For those who use an assembler for the first time: Read from
Chapter 1, General of this manual.

For those who have a general understanding of assembler programs:
You may skip Chapter 1, General of this manual. (However, it is
advisable to read Section 1.3, "Reminders Before Program
Development".)

Source programs for the uCOM-78K/I can be described in several
different ways. Be sure to read Chapter 2, "How to Describe Source
Programs".

For those which wish to know the directives and control instruc-
tions of the assembler: Read Chapters 3 and 4, respectively,
because the format, function, use, and application examples of
each directive or control instruction are detailed in these
chapters.

The uCOM-78K/I instructions are listed in the respective

appendixes. Use the lists for guick reference.

[Symbols and Abbreviations]

The following symbols and abbreviations are used in this manual:

Symbol Meaning

e Continuation {(repetition) of data in the same format
{ 1 Parameter(s) in brackets can be omitted.

won Characters enclosed in " " (double quotes) must be

input as 1is,.

() Characters enclosed in parentheses must be input
as is.

< > Characters enclosed in < > must be input as is
(or indicates a title).

_— Important point

L

One or more blanks {spaces) must be input:

A Indicates one blank {space).

L]

This part of the program description is omitted.

iii

[References]

The documents related to this manual are shown below.

Document name

Document No.

Assembler related

RA78K/I Assembler Package User's Manual
for Operation - PC-9800 series (MS-DOS)
and IBM PC (PC-DOS) based

Debugger related ,
IE-78112-R User's Manual Volume I - Hardware

IE-78112-R User's Manual Volume II - Software

IE-78112-R System Software Operation Manual
IBM PC (PC-DOS) based

TE-78120-R System Software User's Manual
IBM PC (PC-DOS) based

Device related
uPD78112 User's Manual
Product Catalog for D78112CW/GF

EEM- !

EEP-1026
EEM-1023
EEM-1028

EEM-1047

IEM-1136
IP-1091

NOTE: Contact your nearest NEC dealer for the latest

information on the reference documentation,

*MS-DOSTY is a trademark of Microsoft Corp.

**IBM PCTM and pc-pos™ are trademarks of IBM Corp.

iv

TABLE OF CONTENTS

CHAPTER 1 GENERAL cuveeecccconccsannnsansscssasssesssnanssnsna

1.1

1.2

1.3

1.4

Assembler Overviewcceceean sessesarseresesreanen s
1.17.7 What is an assembler?cccriececacsssnsavonsnnss
1.17.2 What is a relocatable assembler? saenna
Functional Qutline of Assembler Package ..eiesvesesssns
1.2.7 Creation of source module file with editor
1.2.2 Assemblerieeesssssssssssssscsannssnssscsncssss
1.2.3 Linker .eveieeeeersonssncscnsssncecsssssnassnnsanas
1.2.4 Locater tasssasascannns Cesseesennas cessesna
Reminders Before Program Development ...cesececesassasnas
1.3.1 Size of source module fileicieveeensosacensa
1.3.2 Number of files that can be input to Linker
1.3.3 Restriction on number of symbolsccceunennnes
1.3.4 Maximum performance characteristics of

assembler pPackage .eieeescsssscssnssssssssasscsnnea

Features of Assembler Package .cevesass stesscesenassana

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS ...iecvccscencnee

2.1

2.2

Basic Configuration of Source Program ...siseeesesscencs
2.17.1 Module header ..ivicieireensessssscssasconsssannaa
2.1.2 Module DOAY +ieescecessconcsososasassssssscasasnss
2.1.3 Module tail cremses cetcecsnsanssssnannans .
2.1.4 Overall configuration of source programee..
2.1.5 Description example of source programeseceee.
Description Format of Source Program ..ccceccsveencnnns
2.2.1 Configuration of statementcceeeevssovencesa
2.2.2 Character setciirreenccrencans reresmasannas
2.2.3 Fields of statement ...cciveesesrenssensesssnsnnns
Expressions and Operatorsececececceaccas ceesen senen
2.3.1 Punctions of operators .ceeicecssaas caveea ceesasren
2.3.2 Restrictions on Operationsececscavssrsancoas
Characteristics of Operandsccceceeccccassanncas eea
2.4.1 Size and address range of operand value«..
2.4.2 Symbol attributes and relocation

attributes of operands Sttt etaeneeseaaseesaaneans

1-10
1-11
1-12
1-13
1-14
1-14
1-14
1-14

1-15
1-16

2-1
2-1
2-2
2-3
2-3
2-4
2-5
2-9
2-9
2-10
2-12
2-24
2-25
2-43
2-49
2-49

2-51

CHAPTER 3 DIRECTIVES * 8 & & & 0 8 A4 s A B S B F RS s00 * 4 & 5 8 & 8 888 S F e

3.1

Overview of DirectivesS ceeevrsscasasnsns cessranesanca e

3.2 Directives for Segment Definition ...eeee eccecscanss oo

3.8

(1) CSEG * 9 %8 888" se LU IR N R IR N N N N I B B R Y N BRI B N s 88 8 0w e

(2) DSEG sesceescscacnsans Cietetiessassnananens cresensesas

(3) BSEG cvecsvsasacascasacosnasnnss cecesrseseenrananans
(4) ORG sveneacevesnnne ceevrenan resaesesns cactescssnnaes
(5) ENDS seevevcoacacances s eeesctsssrasasanensiresesen ‘o
Directives for Symbol Definition ...ciceencccrccacacsss
(1) EQU tuvevenosonannancsnnannnnanas Cheteatsessesasens
(2) SET veveonrcnncascnnnnss Cerereerresaraanannen ceeans
Directives for Memory Initialization and

Area Reservaltion .sieesrssccconsnss seensasneanenen e

(1) DB vereeennncnnnnannns cececseasasescens cedseesasses

(2) DW ceiiiennsnancnssosaracancns cecesrancnessseaan e ea
(3) DS tvneveennransssssasnnasns essastssasaresssssasarue s
(4) DBIT .s.veenccsnnessoannnea cetessssaransennas ceevanes
Directives for Linkage ..secececssassns ceseresrecnsaaans
(1) EXTRN cicceracsnancacsonnesnaas eecesescnna cesacs ees
(2) EXTBIT tvevneccnanas Ceredsearassaececnarnnan cherens
(3) PUBLIC .sevevsccanane csssessssnessan FEERETREE ssensns
{(4) NAME ...0ceece teressareccansensas tees s s s sraensusece
Directive for Automatic Selection of BR Instruction ...
(1) BR tiiiecionnonanossnacnessasnanscsasnsennns veenness
Macro Directives Gttt erereasasescannsansaaanas
(1) MACRO ..cvesnvsansasscncnsacssacasans cetasmesesasans .
{2) LOCAL ..vcessnannn “assessraseasasesnenas taaessenvaa
{3) REPT .iivsenscacacncnansnca Cecacesanscaances cssenes
(4) IRP ...0nvnne Cresescacsssasnenenn R .
(5) EXITM .vvceessecsesssnsnsnsasne ceesssanassssseasas ceven
(6) ENDMciciiieenanse tetesssssenesssacncacssssnesre

Directive for Assembly Termination ...secccieaiass ceee

(1) teeeeeesnnnnssasesssassansnsnsnssssnsnsssncsasansnns

vi

. CHAPTER 4 CONTROL INSTRUCTIONS ..escessscssnns

4.1 Overview of Control Instructions
4.2 INCLUDE Control Instructionec0000.
(1) INCLUDE ..ecveecenes ceetrensnasesuteee
4.3 Assembly List Control Instructionsc.ccoveeeverecace
(1) EJECT tuvcetseeusossasscnssasscasanansnsnsssncsnsnsse
(2) NOLIST ceserssssnsrssersecnne
(3) LIST teeecesnncssosssnssssasascsessvasna
(4) SUBTITLE .evevercnncnccnannns ceeseeens

* 88 8 4 s 888888

4.4 Control Instructions for Conditional Assembly .csvecec..
(1) IF, ELSEIF, ELSE, ENDIF ..ccciiccccsasasanancnannans
(2) SET' RESET ® 8 & % 4 & A & B S F &S B AS RSB RE SR S PSS RSP E SN S ESSN

CHAPTER 5 MACROS ..ceveveccccossssssssnnncansa

5.1 Overview of Macro c et eeseseencanTttestssnannansanannnas

5.2 Utilization of Macros .cecaaess ce st s essana

5.2.1 Macrodefinition ...ceescssssasesesens

5.2.2 Macro reference .escescassnnscns ceae

LR B R AR L B]
* " 5 P v s e e s se

LRI B L B B I B I

5.2.3 MacroexXpansSion .icsceecsssccnsessenssersssanscena

5.3 Symbols within Macro ...ceceesccceccces eeea

CHAPTER 6.

APPENDIX A
APPENDIX B
APPENDIX C
APP C-1.
APP C-2.
APPENDIX D

PRODUCT UTILIZATIONccos00aava .

APPENDIXES
LIST OF RESERVED WORDS ..cvseesnsen
LIST OF DIRECTIVES .ciccscsnsccccca
INSTRUCTION SET OF uCOM-78K/I
Instruction Set and Its Operation .
Instruction Codes ...c..ceecesens .
MAXIMUM PERFORMANCE CHARACTERISTICS

INDEX

vii

@ s % % e 30 e saa

4-16
4-17
4-24

5-1
5-1
5-3
5-3
5-4
5-5
5-7

A-1
A-4
A-7
A=-7
A-27
A-36

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fiqg.
Fig.
Fig.
Fig.
Fig,
Fig.
Fig.
Fig.
Fig,
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Table
Table

Table
Table
Table
Table

Table
Table
Table
Table

1-8.
1-9.
1-10.
1-11.
1-12.
2-1.

1-1,
2-1,
2-2,
2-3.
2-4.
2-5,

ILLUSTRATIONS AND TABLES

Agsembler Packagecceeeessssscsancas ceetennsas

Flow of Assemblerveieeecescsncesnnncssoscncnsna

Development Process of Microcomputer-applied

PrOdUCt~.... ------------- LR NN NN A)

Software Development Processcccevecsecccan.

Assembly Phase by This Package ...c.sveseccssanans .

Re-assembly for Debuggingc.cceeiceesnsavanonens

Program Development Utilizing Existing Modules ...

Program Development Procedure with This Package ..

Creation of Source Module File ..c.iieneacevatsoanes

Functions of Assembler A

FunCtions Of Linker [BE R LR R R R A DL R I I 2 2 B BN BB RCRE I I

Functions of Locaterveeceececccans seresssans

Configuration of Source Modulec.ccienenen.

Overall Configuration of Source Programcce...

Examples of Source Module Configurations

Configuration of Sample Programcceesenene
Fields That Make Up A Statement

Memory Allocation to Segmentsciivevecriccennnn

Relocation of Code Segmentceveeeccannn ceeean .

Relocation of Data Segment ...ccceicenssenssscccs

Relocation of Bit Segment ...cececcecsssscsescanas

Relocation of Absolute Segmentvecevcecens cees

Relationship of Symbols between Two Modules

Size of Source Module File R E R R R R

Items That Can Be Described in Module Header

SymbOl Types fesI LT AT IR sEBERERPERESTERCRSOTTCS e

Types of Symbol Attributesceevevesnnccanns

Methods of Representing Numeric Constant Types ...

Special Characters That ‘Can Be Described in

Operand Field R RN LI B I R B A I B R R N I I 2N B B Y)

Types of Operators et s s s sre s st sseeaa e aan

Order of Precedence of Operators ...esveeevesssens

Types of Relocation Attributes ...ceceecececascnnse

Combinations of Operators and Terms by Relocation

Attribute

@ % 8 2 9 % 5 PR A A TSNS SRR RSSO E e AN s e

viii

1-1.

3-15
3-20
3-46

1-14
2-2
2-13

2-15

2-18

2-20
2-24
2-24
2-43

2-44

able

‘able
‘able
'‘able
‘able
‘able
Table
Table

Table

Table
Table
Table

Table
Table

Table
Table

2-11.
2-12.
2-13.
2-14,
2-15.
3-1.

3-2.

3-3.
3-4.
3-5.
3-6.

Combinations of Operators and Terms by

Relocation Attribute (External Reference Term) ..

Types of Symbol Attributescciiievecccesess

Combinations of Operators and Terms by Symbol ...

Conditions for Size of Operand Valueevevnses

Conditions for Address Range of Operand Value ...

Operand Attributes of Instructionsiesevceses

List of DirectiveS iuvsecccsscasans vesssen

Segment Definition Methods and Memory Address

AllOCation R EEEEEEEE T I A RN R I AR B N R R I BN R L

Functions of Relocation Attributes

Uses of Relocation aAttributes

& P B B A S 8w 4w e BB RS

Default Segment Names of Code Segments

Representation Formats of Operands

Indicating Bit ValuesS .eevessccscssencanssnacnsas

Bit Address Map «e¢eeesse camesaean
Bit Value That Can Be Described as Operand

Of EXTBIT ...ceeevesranccncsesnsensaacnnas

Optimization Conditions of BR Directive

List of Control Instructions

ix

3-3
3-6
3-6
3-7

3-28
3-33

3-59
3-59

CHAPTER 1. GENERAL

1.1 Assembler Overview

The RA78K/I Assembler Package is a series of programs designed
to translate a source program coded in the assembly language of
the uCOM-78K/I series microprocessors, into machine language
coding.

The assembler package contains three programs: Assemb;er, Linker,

and Locater.

Fig. 1-1. Assembler Package

L/////////}xssemblﬁer program
Assembler package

Linker program

Locater program

1.17.1 What is an assembler?

(1) Assembly language and machine language
An assembly language is the most fundamental programming
language for microprocessors.
To have a microprocessor do its job, programs and data are
required. These programs and data must be written by a human
being (i.e., a programmer) and stored in the memory section of
a microcomputer. Programs and data that can be handled by the
microcomputer is nothing but a set or combinations of binary
numbers which is called machine language (i.e., the language
that can be understood or interpreted by the computer).
To create a program in machine language coding, namely, by
a set of binary numbers is not an easy job for a human being,
because it's difficult for him or her to remember the coding
and he or she is likely to make errors in coding.
For this reason, there is a method of creating a program
using an abbreviated symbol (or mnemonic symbol) which
represents the meaning of a machine language instruction to
assist the human memory. A programming language system by
this symbolic coding is called an assembly language.

1-1

(2)

To translate a program created in the assembly language into
a set of binary numbers that can be understood by the micro-
processor, another program is required. This program is called

an assembler.

Fig. 1-2. Flow of Assembler

Program coded in
Program written in a set of binary
assembly language Translatin
mbly guag Proat ing numbers

Trans-
| [stion)

7 LY

(Source module file) (Assembler) (?pie?t module
lie

Development of microcomputer-applied products and role of

this package

Fig. 1-3 illustrates the standing of the programming in
assembly language in the developmént process of microcomputer-

applied product.

1-2

Fig.

1-3 Development Process of Microcomputer-applied Product

Product
planning
] System
) design
Hardware Software
development . ‘development
: . Software
Logic design design
Program creation
in assembly
Manufacturing language :
Position
Assembly — 2§i5
Inspection package
~oe>
NO
0K YES
YES .
Debugging
l'll" NO
YES
System
evaluaticn
Product
marketing

The software development process will be further detailed

in Figqg.

1-4 on the next page.

1-3

Fig.

1-4.

Software
development

Preparation
of-program
specs

1
Preparation of
flowchart

Coding

NO

Editing of
source module

Assembly

YES Any

rrorz

NQC

Debugging

System
evaluation

Software Development Process

in uCOM-78K/I assembly language

Creates a source module file
with the editor.

Creates an object module
file.

- Checks the object module file for

proper cperation using a hardware
debugger {e.g., in-circuit emulator}.

The assembly phase in the software development process will

be reviewed in further detail by giving an example of this

package.

Fig. 1-5. Assembly Phase by This Package

From Editing
of source
cdule

Outputs an object module
Assemble file
YE Any
5 assembly
error?
NO
o Editing of
ource modul
Link OQutputs a link module file.

Outputs a HEX-format object
Locate module file.

|To Debugging)

1-5

1.1.2 What is a relocatable assembler?
The machine language translated from a source language by the
assembler will be stored in the memory of the microcomputer before
use. In this case, in which memory location each machine language
instruction will be stored must have been determined. Therefore,
information on "the allocation of each machine language instruc-
tion to a specific address in memory" will be added to the machine
language converted by the assembler.
Depending on the method of allocating addresses to machine
language instructions, an assembler can be broadly divided into an
absolute assembler and a relocatable assembler.
0 Absolute assembler
Allocates the machine language instructions converted in
one-time assembly operation to absolute addresses.
0 Relocatable assembler
Addresses determined for the machine language instruc-
tions converted in cne~time assembly operation are
tentative, Absolute addresses will be determined by a

program called the locater.

In the past, when a program was created with the absolute
assembler, programmers had to, as a rule, complete programming at
a time., However, if you create a large program at a time, the
program becomes complicated, making analysis and maintenance of
the program troublesome. To avoid this, such a large program is
developed by dividing it into several subprograms (i.e., modules)
for each functional unit. This programming technique is called
the modular programming.
The relocatable assembler is an assembler suitable for modular
programming. The following advantages can be derived from modular
programming with the relocatable assembler:
(1) Increase in development efficiency
It's difficult to write a large program at a time.
In such a case, divide the program into modules for each
function and the program can be developed with two or more
programmers engaged in writing subprograms at the same time.
This will certainly increase development efficiency of the
program.

If any bugs are found in the program, you do not need to
re-assemble the entire program just to correct part of the

program. Only the subprogram {module) requiring correction(s)

can be re-assembled. This will help shorten the debugging

time.

Fig. 1-6. Re-assembly for Debugging

Program consisting of
single module

Module

Entire
program
must be
assembled
again.

Program consisting of
two or more modules

Module

Module

1-7

- X X X X

Module

Module

Only this
module
need to be
assembled
again.

(2) Utilization of resources
Highly reliable, highly versatile modules which have been
previously created can be utilized for creation of another
program. If you accumulate such high-versatility modules as
software resources, you can save time and labor in developing
a new program.

Fig. 1-7. Program Development Utilizing Existing Modules

Module A Module B Module C Module D

New module

5 | Module A

New module

[43

Module D

New program

1-8

1.2 Functional Outline of Assembler Package
An ordinary program development procedure with this assembler

package is illustrated in Fig. 1-8. The development of a program

is basically performed by using the assembler, linker, and

locater.
In the following discussions,

the assembler, linker, and locater

programs are collectively referred to as "the assembler package

or this package" and the assembler program, as "the assembler",

Fig. 1-8. Program Development Procedure with This Package

Editor

Source
g) module
file

Assembler
{RA78K1)

Program
Lr Module
Module 14
Module
Editor Editor
-{ Source Source
() module (P module
file file
Assemble Assembler
(RA78K1) {RAT8K1)

QLY

¢

Assembly Objésrﬁ‘““aﬁﬁssemb; Obiiii—",f—””’abject
i ist: file |module aul
%;ig module " file Fesembly ?gl:_e

file-

Linker I%St

(LK78K1) file
Link list Link module
file file

Locater

{LC7BK1)

.

?

LS

Symbol

Locate HEX-format

table file list file object module file

1-9

1.2.1 Creation of source module file with editor
Devide one program functionally into several modules.

Each module becomes the unit of coding as well as the unit of
input to the assembler. A module serving as the unit of input to
the assembler is called a source module.

After coding each source module, the source module is written into
a file with the editor. The file thus created is called a source
module file. _

The source module file becomes an input file to the assembler
(RA78K1}.

Fig. 1-9. Creation of Source Module File

Program ’ Source module

Source
module

END

Source ~
module ~

S END

END

Source
module.

END

Write to file
{Editor)

9

Source module file

1.2.2 Assembler

The assembler accepts source module files as input files and
translates assembly language into machine language.

If any coding error is found in the input source module, the
assembler outputs an assembly error., If no assembly error is
found, the assembler outputs an object module file which contains
machine language information and relocation information relating
to the allocation address of each machine language instruction.
The assembler also outputs information at assembly time as an

assembly list file.

Fig. 1-10. Functions of Assembler

Source module file

Translates assembly
language into
machine language.

Any
assembly
error? .
Assembler
{RATBK1)

Output Creates object

module file.

?

Object
module file

Creates assembly
list file.

. —— o e et o ot At o o e . v e T A TTrY S —— o s o

Assembly list file

1.2.3 Linker

The linker accepts two or more object module files output by
the assembler or link module file output by the linker itself
as input files and gathers them for output as a single link
module file. The linker also outputs information at link time

as a link list file.

Fig. 1-11. Functions of Linker

Two or more object module files

vee (}) or link module files

Input

Linker
{LK78K1)

Output

9

O
]

Link module
file

Link list
file

1.2.4 Locater

The locater accepts the object module file output by the assembler
or the link module file output by the linker as an input file

and determines the addresses to be allocated to machine language
instructions and outputs the result of the locate operation as

a HEX-format object module file.

The locater also outputs the symbol information required in
symbolic debugging with an in-circuit emulator as a symbol table
file and the allocation address information at locate time as a
locate list file.

Fig. 1-12. Functions of Locater

Object module file
() or
link module file

Input

Locater
{LC78K1)

Qut|put

Nl I S

Symbol table HEX-format Locate list
file object modulefile
file

The processing of this package terminates when the processes up to
the locater have been completed normally.

1-13

1.3 Reminders Before Program Development

Before you set your hand to the development of a program, keep
in mind the following points:

1.3.1 Size of source module file
The size of a source module file that can be input to the
assembler is limited to one of the following values depending on

the operating (or execution) environment of the assembler.

Table 1-1., Size of Source Module File

Host machine 0s Size of source module
file that can be input
MD-086/116 series | Concurrent CP/M 64K bytes max.

PC-9800 series MS-DOS 64K bytes max.
CP/M-86
VAX-11 series VMS Approx. 850K bytes max.

With a source module file having a size of 64K bytes, assuming
that each line of the source module consists of an average of 30
characters, a program of up to about 2K steps can be assembled as

a single source module file.

1.3.2 Number of files than can be input to Linker
The number of object module files and/or link module files that

can be input to the linker is 100.

1.3.3 Restriction on number of symbols
The number of local symbols and that of PUBLIC symbols, which can
be defined in the assembler, linker, and locater, respectively,

are restricted as shown in the table below.

Number of symbols

No. of local symbols [No. of PUBLIC symbols
Assembler Approx. 1,800 256 :
Linker 1,800 x No. of modules| Approx. 2,000
Locater 1,800 x No. of modules{ Approx. 2,000

NOTE: If any PUBLIC symbols have been defined, the number
of local symbols that can be defined in the assembler

must be reduced to the following value:

No. of local symbols that can be used in Assembler
= Approx. 1,800 - No. of PUBLIC symbols defined

1.3.4 Maximum performance characteristics of assembler package
The maximum performance characteristics of the assembler package
that should be kept in your mind before program development are
listed in the following tables.

(1) Maximum performance characteristics of Assembler

Item Restriction
Symbol length 6 characters
No. of characters per line 99 characters
No. of code segments per type 1 segment

No. of absolute segments 10 segments
No. of macrodefinitions 10 definitions

(2) Maximum performance characteristics of Linker

Item Restriction
No. of input module files 100 files
No. of different segment names 255 names

No. of absolute segments 100 segments

(3) Maximum performance characteristics of Locater

Item Restriction

No. of relocatable segments 256 segments

in the input module

1.4 Features of Assembler Package

This package has the following features:

(1) Macro function

(2)

(3)

When the same group of instructions must be described in a
source program over and over again, a macro can be defined by
giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and
readability of the program can be increased.

Optimize function of branch instructions

The assembler package has an assembler directive to automatic-

ally select a branch instruction (i.e., BR directive}.

To create a program with high memory efficiency, a 2-byte
branch instruction must be described according to the branch
destination range of the branch instruction. However, it is
troublesome for the programmer to describe a branch instruc-
tion by paying attention to the branch destination range for
each branching. If the BR directive is described, the .
assembler generates the appropriate branch instruction
according to the branch destination range. This is called
the optimize function of branch instructions.

Conditional assembly function

With this function, part of a source program can be specified
for assembly or non-assembly according to a predetermined
condition. If a debug statement is described in a source
program, whether or not the debug statement should be
translated into machine language can be selected by setting
a switch for conditional assembly. When the debug statement
is no longer required, the source program can be assembled
without major modifications to the program.

1-16

CHAPTER 2., HOW TO DESCRIBE SOURCE PROGRAMS

2.1 Basic Configuration of Source Program

When a source program is described by dividing it into several
modules, each module which becomes the unit of input to the
assembler is called a source module. (If a source program consists
of only one module, the source program means the same as the
source module.) ,

Each source module which becomes the unit of input to the
assembler consists mainly of the following three parts:

(1) Module header

(2) Module body

(3) Module tail

Fig. 2-1. Configuration of Source Module

Mcdule header

Mcdule body

Module tail

2.1.1 Module header

In the module header,

five different items can be described as

shown in Table 2-1 below.

Table 2-1. Items That Can Be Described in Module Header
Item |Item that can | Explanation Chapter/section
No. be described +| in this manual
1 Assembler Assembler option(s) which| See 4, "Control
options are normally specified in | Instructions”.
the start-up command line
of the assembler can be
described before NAME
directive in the module
header.

2 NAME directive| This directive can Dbe See 3.5, '"Linkage
described only in the directives".
module header and must
always be described.

3 PUBLIC, EXTRN,| These directives can be See 3.5, "Linkage
or EXBIT described only in the directives."
directive module header.

4 EQU or SET These directives can be See 3.3, "Symbol
directive described after PUBLIC, definition

EXTRN, or EXBIT direc- directives."
tive in the module
header,

5 Control Control instructions See 4, "Control

instructions can be described after Instructions."

NAME directive in the
module header.

NOTE: These items

the order of item numbers.
1) must be described before the NAME

(Item No.

must be described in the module header in

(Namely, assembler option(s)

directive (Item No. 2). Comment(s) can be described

anywhere after the assembler option(s)} in the module

header and control instruction(s)} can be described
after the NAME directive in the module header.

2.1.2 Module body
In the module body, the following items cannot be described:

o Assembler options

o NAME directive

o PUBLIC, EXTRN, and EXTBIT directives
All other directives, control instructions, and uCOM-78K/I
instructions can be described in the module body.
The module body must be described by dividing it into units each
called a segment.
The user may define the following four segments with a directive
corresponding to each segment:
(1) Code segment Must be defined with the CSEG directive.
(2) Data segment Must be defined with the DSEG directive.
(3) Bit segment Must be defined with the BSEG directive.
(4) Absolute segment ... Must be defined with the ORG directive.

The module body may be configured with any segment combinations,
provided a data segment and a bit segment must be defined before
a code segment.

2.1.3 Module tail
The module tail indicates the end of the source module. The END

directive must be described in this part.

2-3

2.1.4 Overall configuration of source program

The overall configuration of a source module becomes as shown

below.

Fig. 2-2. Overall Configuration of Source Program

Assembler option(s)

INAME directive]

EQU and SET directives
PUBLIC, EXTRN, and EXTBIT
directives

Contreol instruction(s)

Directives (other than

NAME, PUBLIC, EXTRN, EXTBIT)
Control instruction(s)
Instruction(s)

. |[END directive]

NOTE: [1 indicates that the directive must

always be described.

Module header

Module body

Module tail

Examples of simple source module configurations are shown in

Fig. 2-3 on the next page.

Module header{ NAME TEST! NAME TEST?
[ORG OH BSEG
Module body)| WONUPOUUUIS SoreUOuN I RPURUEORR .
CSEG DSEG
cse¢]
Module tail {-"-E}:I-l-) ---------------- Eﬁb' ------------------

2.1.5 Description example of source program

In this subsection, a description example of a uCOM-78K/I source

program is shown, in the hope that you can have a general idea of
how to describe a source module. (This example is attached to the
package product as a sample program file.)

The configuration of the sample program can be illustrated simply

as follows:

Fig. 2-4. Configuration of Sample Program

<Module name: SAMPM>

NAME SAMPU

DSEG

ORG OFE20H
variable definition <Module name: SAMPS>

CSEG

ORG OH NAME SAMPS
MAIN: DW START

CSEG / CSEG CSEG
START: 2 . CONVAH: e SASC: 8

CALL !CONVAH CALL !SASC RET

? 8

RET

/

END

END

This sample program was created by dividing a single source
program into two modules. The module "SAMPM" is a main routine

of this program and the module "SAMPS", a subroutine which is to
be called within the main routine.

2-6

<Main routine>

$ PROCESSCR(112)

HEH

H

e s ¥ ¥ TRENEERREELEENERE

it

13 main-routine
i*

i% %

H HEX -> ASCli Converslon Frogram

»* 4 A X B

t++411} £33

. PUBLIC MAIN, START

EXTAN CONVAH
DSEG
ORG OFE40H
HDTSA: DS L
STASC: DS 2
CSEG
ORG OH
MAIN: DW START
CSEG
START: MOY SP, $0EGH
-MOY M4 %00
MoY ST8C, #00
oY HDTSA, #1AH
MOYW HL, #HDTSA

CALL | CONYAH

MOYW HL, #45TASC

MOV A B
MOY [HLE, A
INC L

MOY AC
MoY [HLi. A
BR $$

END

H <3
HT Y

1(B)

$(6)
HEp

ite)

;set hex 2~code data ln HL reglstor

iconvert ASCI} <— HEX
;output BC-reglster <— ASCI] code
:set HL <— stors ASC]] cods table

Assembler option

(1)

{2) Declaration of

{(3) Declaration of
as an external

a module name

Mocdule header

Module body

/7

} Mcdule tail

a symbol referenced from another module

definition symbol

(4) Declaration of a symbol defined in another module as
an external reference symbol

{5) Declaration of

{6) Declaration of

(7) Declaration of
address 0OH

(8) Declaration of
the end of the

{9) Declaration of

‘the start of a data segment
the start of a code segment

the start of an absolute segment from

the start of the code segment (meaning

absolute segment)
the end of the module

2-7

<Subroutine>

‘\
s PROCESSORLIN2) i
NAME SAMPS ~ 1D
' Pre k% * T
] *
t# HEX ~> ASCI] Conversion Propram *
% *
% sub=routlne * P Module header
H i
H Input condlitlon ¢ (HL} <- hex 2 cods]
* *
i®* output condition ¢ BC-repgister <-ASCl} 2 code =
Y : *
PEEEEFEERRRRLESERL LIRS * EEEEEERRERE
PUBLIC CONYAH , 1412) J
-~
CSEG H1D
CONYAH: MOY A, {HL) tload hex code -> Ace
SHR A4 thex upper coda load
CALL |SASC
MOY B, A istore resuylt
Moy A, fHL] iload hex code => Acc
AND A BOFH ihex lowsr code load
CALL 1SASC . :
MOy C.A istore result
RET : f Module body -
i# subroutline convert ASCI] code *
H] Input Acc (lowar 4blts) <~ hex code *
ix output Acc <= ASCI1 code *
CSEG
SASC: o A, #0AH icheck hex code > 9
BC $SASCI
ADD A H0TH iblast(+7))
SASCI: ADD A, 830H iblas(+30) p.
RET
END ’ 1 (14} } Module tail
(10) Assembler option
(11) Declaration of a module name
(12) Declaration of a symbol referenced from another module

as an external definition symbol
(13) Declaration of the start of a code segment
(14) Declaration of the end of the module

2-8

2.2 Description Format of Source Program

2.2.1 Configuration of statement

A source program consists of statements.

Each statement consists of the four fields shown in ﬁig. 2-5.

Fig. 2-5. Fields That Make Up A Statement

ement - Symbol
Statem = field

Mnemonic

Operand
field

Comment
field

field

l

|

|
®

®

®

(CR)LF

(1) The Symbol field and the Mnemonic field must be
separated from each other with a colon (:) or one or

more blank {(or TAB) characters.

(@ The Mnemonic field and the Operand field must be
separated from each other with one or more blank (or TAB)
characters. Depending on the instruction described in
the Mnemonic field, the Operand field may not be required.

3 The Comment field if used must be preceded with a

semicolon (:).

A statement must be described within a line.

terminated with a LF (0AH) code.)

Up to 99 characters can be described per line.

The following lines may also be described:

(A line must be

o Dummy line (a line without statement description)

o Line consisting of the Symbol field alone

o Line consisting of the Comment field alone

2.2.2 Character Set
Use the following alphabetic, numeric, and special characters to

describe statements.

(1) Alphabetic characters

A B D EF G H I J XK LMN
o P T U V W X Y 2
2 b e e { g i }J %X 1 m n
© p 49 r s t uvu.v w x ¥y 1

NOTE 2-1 .
When any lowercase letter is used in a symbol or reserved

word description, the lowercase letter is interpreted as

its uppercase eguivalent,

(2) Numeric characters

. (3) Special characters

Character Name Main use
? Question mark Symbol equivalent to alphabetic
characters
@ Unit price Symbol equivalent to alphabetic
symbol characters
_ Underscore Symbol equivalent to alphabetic
characters
Blank Delimiter of each field
HT (09H) TAB code Character equivalent to Blank
' Comma Delimiter between the 1st and 2nd
operands
: Colon Delimiter between the Symbol and
Mnemonic fields
; Semicolon Symbol indicating the start of
the Comment field
CR (ODH) Carriage return Symbol indicating the end of a
code line
LF (0QAH) Line feed code Same as above
+ Plus sign ADD operator or positive sign
- Minus sign SUBTRACT operator or negative sign
* Asterisk MULTIPLY operator
/ Slash DIVIDE operator
. Period BIT operator
() Left and right Symbols specifying the order of
parentheses arithmetic operations to be

performed

Single quotation
mark

Symbol indicating the start or

end of a character constant

Character

Name

Main use

$

Dellar sign

Sharp sign

Exclamation

point

Braces

o Symbol indicating the location
counter ‘

o Symbol indicating the start of
an assembler optidn

o Symbol specifying a relative

addressing mode

Symbol specifying an immediate
addressing mode

o Symbol specifying an absolute
addressing mode

o Symbol specifying the operand:
representation format addri16

of a MOV instruction

o Symbol specifying an indirect

addressing mode

2.2.3 Fields of Statement

The respective fields that make up a statement are detailed in

this subsection.

(1) Symbol field

Statement =

Symbol Mneinonic
field field

Operand Comment
field field

A symbol is described in the Symbol field. The term "symbol"

refers to a name given to a numerical data or address.

By using symbols, the contents of a source program can be

understood more easily.

The types and attributes of symbols and the conventions of

symbol description are explained below.

2-12

. [Symbol tybes]

Symbols are available in the types shown in Table 2-2,

depending on their use and method of definition.

Table 2-2. Symbol Types

Symbol type Use Method of definition
Name Used as a numerical data| This type is described
in a source program. in the Symbol field of
the EQU, SET, or DRBIT
directive, or in the
Operand field of the
EXTBIT directive.
Label Used as an address data This type is described
in a source program. in the Symbol field of

an instruction or the
DB, DW, or DS directive.

A colon (:) must be

used as a delimiter.

This type is also
described in the Operand
field of the EXTRN
directive.

Segment name

Used as a segment name
subject to operation
in a locater option

This type is described
in the Symbol field of
the CSEG, DSEG, BSEG,
or ORG directive,

Module name

Used as a module name
in symbolic debugging

This type is described
in the. Operand field
of the NAME directive.

Macro name

Used as a macro name
for macro reference in

a source program.

This type is described
in the Symbol field of
the MACRO directive.

[Conventions of symbol description]

All symbols must be described according to the following rules:

1 A symbol must be made up of alphanumeric characters and
special characters (?, @, and _)} that can be used as a
symbol in a manner equivalent to alphabetic characters.

The first character of the symbol must always be one of the
alphabetic characters or special characters;(?, @, and _).

C) A symbol must be made up of not more than six characters.

If a symbol consisting of seven or more characters is
described, an error will result.

(3 No reserved word can be used as a symbol.

Reserved words are indicated in Appendix A, List of Reserved
Words.)

@ The same symbol cannot be described two or more times
(provided that the name defined with the SET directive can be
re-defined with the SET directive). _

C) Lowercase letters described as a symbol will be interpreted
as their uppercase equivalents.

(® When describing a label in the Symbol field, separate the

Symbol field from the Mnemonic field with a delimiter ":".

(Example of correct symbol descriptions)

TEN EQU 10H ; "TEN" is a name.

NEXT: BR !100H ; "NEXT" is a label.

C1 CSEG ; "C1" is a segment name.
NAME SAMPLE ; "SAMPLE" is a module name.

MAC1 MACRO ; "MAC1" is a macro name.

(Example of incorrect symbol descriptions) !
SEVENTY EQU 70H ; "SEVENTY" is a name. o
187T: MOV A,#OH ; No numeric character can be used
» | as the 1st character of a symbol.

NEXT BR 1100H ; "NEXT" is a label and must be
separated from Mnemonic field
with a colon (:)

TEN EQU 10H

ten EQU 20H symbols., Description of "ten" will

"TEN" and "ten" are the same named

-

thus result in an error.

2-14

{Symbol attributes]

Names and labels each have a value and an attribute.

Segment names, module names, and macro names have no value.

A value refers to the value of a defined numericél data or address
data itself.
The attribute of a symbol is called a symbol attribute and must be

one of the types indicated in Table 2-3.

Table 2-3. Types of Symbol Attributes

Attribute type

Classification

NUMBER

o Names defined with EQU and SET directives
{provided that labels, bit wvalues, and

symbols having a bit value defined with

the directives are excluded.)

ADDRESS

o Symbols defined as labels
o Names defined as labgls with EQU and SET

directives

BIT

o Names defined as bit values with EQU and

SET directives

o Names defined with DBIT directive

({Examples)

TEN

START:

BIT1

EQU 10H

CRG 80H

MOV A,#10H

EQU OFE20H. O

(2) Mnemonic field

Statement o

-

-a

-

Name "TEN" has attribute NUMBER
and value 10H.

Label "START" has attribute
ADDRESS and wvalue B80H.

Name "BIT1" has attribute BIT and
value OFE20H. 0.

Symbol
field

Mnemonic
field

Operand Comment

field field

2-15

In the Mnemonic field, a mnemonic instruction or directive is
described.

With an instruction or directive requiring an operand or
operands, the Mnemonic field must be separated from the
Operand field with one or more Blank or TAB characters.

(Example of correct descriptions)

MOV A, #0H
CALL !CONVAH
RET

(Example of incorrect descriptions)

MOVA, #0H ;7 No blank exists between Mnemonic and
Operand fields.

CAL L !CONVAH A blank exists in Mnemonic field.

HLT ; UCOM78/I has no such instruction as

"HLT"

-

(3) Operand field

Statement’ field field field field

Symbol Mnemonic Operand Comment

In the Operand field, the data (operands) required for the
instruction or directive described in the Mnemonic field
must be described. Depending on the instruction or directive,
no operand can be described in the Operand field or two or
more operands must be described in the Operand field.

When describing two or more operands, delimit each operand
with a comma (,).

The following five types of data can be described in the
Operand field:

o0 Constants {numeric constant and character constant)
Register names

Special characters ($, #, !, and [})

Names and labels

¢ o O O

Expressions

2-16

different depending on the instruction or directive. Refer to

Section 2.4, "Characteristics of Operands" for the sizes and
attributes of operands.

See APPENDIX C, "uCOM-78K/I Instruction Set" for the operand
representation formats and description methods in the uCOM-
78K/I instruction set.

Each of these five types of data that can be described in the
Operand field is detailed below.

[Constants]

A constant is a fixed value or data item and is also referred
to as an immediate data.
Constants are divided into numeric constants and character
constants.
o Numeric constants
A binary, octal, decimal, or hexadecimal number can be
described as a numeric constant. The method of representing

each numeric constant type is shown in Table 2-4 below.

2-17

Table 2-4. Methods of Representing Numeric Constant T

(Hexadecial

number)

(value). If the first character
of the constant begins with one
of the characters "A through F",
"0" must be prefixed to the

constant.

Constant type Method of representation Example
Binary constant |Character "B" is suffixed to a 1101B
(Binary number) {string of binary characters

{value).
Octal constant Character "O" is suffixed to a 740
{(Octal number) string of octal characters

{value).
Decimal constant| 2 string of decimal characters 128
(Decimal number)| {value) is described with or 128D

without suffixing character "D"

to the string.
Hexadecimal Character "H" is suffixed to a 8CH
constant string of hexadecimal characters OA6H

o Character constants

A character constant is expressed by enclosing a character

0or a string

with a pair

of characters shown in 2.2.2,

of single gquotation marks.

"Character set"

As a result of an assembly process, the character or
characters are converted into 7-bit ASCII code with the
parity bit (MSB) set as "0".

To use a single guotation mark as it is originally intended,

the single quotation mark must be input twice in succession.

Examples:

; Represents a single blank.

; Represents a pair of single gquotation

marks.

[Register names]

The following registers can be described in the Operand
field.

o General-purpose registers

o General-purpose register pairs

o Special function registers

General-purpose registers and general-purpose register pairs
include those which can be described with their absolute
names (R0 to R7 and RP1 to RP3), as well as with their
function name$ (X, A, B, ¢, D, E, H, L,, AX, BC, DE, and HL).
A register name that can be described in the Operand field
may be different depending on the type of instruction. See
APPENDIX C.1, "Instruction Set and Its Operation" for
details of the method of describing each register.

[Special characters]

Special characters that can be described in the Operand field

- are shown in Table 2-5.

2-19

Table 2-5. Special Characters That Can Be Described in
QOperand Field

Special character Function

$ o Indicates the 'location address of the
instruction having this operand (or the
tst byte of the address with a multiple-
byte instruction).

0 Indicates a relative addressing mode ‘for

a Branch instruction.

! o Indicates an absolute addressing mode
for a Branch or Call instruction.

o Indicates the specification of addrlé
which allows all memory space to be

specified for a MOV instruction.

Indicates an immediate data.

{] Indicates an indirect addressing mode,

{(Application examples of special characters)

Address Source program
100 LOOQP: INC A
107 BNZ $$-1 RN O,

In (O above, the first "$" in the Operand field indicates
the relative addressing of the conditional branch instruc-
tion BNZ. The second "$" indicates the location address
101 to which the first byte of the object code for the
instruction "BNZ $$-1" is to be assigned.

The description in (1) can be substituted with "BNZ $LOOP“

Source program
BR !100H

"1" indicates the absolute address-

-

ing of BR (unconditional branch)

instruction,

"lll
H

MoV a, !2000H indicates addrl16 specification

-

of MOV instruction

SUB A, #10H "#" indicates an immediate data.

-

TEN EQU 10H
SUB A, #TEN 7 "#" indicates an immediate data.

AND A, [HLI] ; "[1" indicate an indirect
addressing mode.

[Names and labeis]
If a name or label is described in the Operand field, the
value of the name or label becomes a numerical data subject to
operation by the instruction or directive described in the

Mnemonic field.

(Application example of name)
TEN EQU 10H
MOV A, #TEN ; This description can be substituted
with "MOV A, #10H".

(Application example of label)

ORG 100H
LOOP: 1INC A
BNZ $LOOP ;7 This description can be substituted

with "BNZ $100H".

[Expressions])
In the Operand field, expressions can be described.
An expression is a valid series of constants, $ indicating
a location address, names, or labels, that are connected with
operators and can be used as an operand of an instruction.
For the expressions and operators, see Section 2.3,

"Expressions and Operators".

(Example of expression description)
TEN EQU 10H
MOV A, #TEN-5H

In this example, "#TEN-5H" is an expression. In this
expression, name "TEN" and numeric constant "5H" are connected
with the "-" (minus) operator. The value of the expression is

O0BH. Therefore, this description can be substituted with

"MOV A, #0BH".

(4) Comment field

Symbol Mnemonic Operand . Comment
Statement= field field field field

In the Comment field, any remarks to identify or explain a
particular step or operation in a program may be described
following the input of a semicolon (;).

By describing comments in the Comment field, an easy-to-
understand . source program can be created. The comments
described in the Comment field are not subject to assembler
operation (i.e., conversion into machine language) but are

output as is on an assembly list.

(Examples of comment descriptions)

$

PROCESSOR(112)

NAME

SAMPS

KEESIRY

i« HEX -> ASC1] Conversion Program

:tx lnput conditlon tHL) <~ hex 2 code

I®

RREEXE

sub-routine

s output conditlon : BC-repister <-ASCI! 2 code

* % B BN RN RN

i
i*
H RS

EEEFRREEREERERERER AR ERR K

CONYAH:

kK

PUBLIC CONVAH
CSEG

MOY A [HL}
SHR A 4
CALL 1SASC
oy B.A
MoY A [HL]
AND A #0FH
CALL 1SASC
Moy C.A
RET

tload hex cods -> Acc
ihex upper cods load

istore result

iload hex code -> Acc
ihex lowar cods load

istore resvit

Lines consisting of
Comment field only

Lines in which comments
are described

2.3 Expressions and Operators

An expression is a valid series of conétants, $‘indicéting a
location address, names, or labels connected with operators.
Elements of an expression other than the operators are called
terms and are referred to as the 1st term, 2nd term} and so forth
from left to right, in their order of description. _
Operators are available in the types shown in Table 2-6, and
their order of precedence in'calculation has been predetermined
as shown in Table 2-7. ‘ ' '

A pair of parentheses (i.e., left and right pafentheses) are used

to change the order in which'calculatiqns are to be performed.
Example: MOV A, #5%(SYM+1) s

In (O above, "5*(SYM+1)" is an expression. "5" is the 1st term
of the expression and "SYM" and "1" are the 2nd and 3rd terms,

respectively. "*, +, and {)" are operators.

Table 2-6. Types of Operators

Type of operator Operators

Arithmetic operators +, -, *, [/, MOD, + sign, - sign
Logical operators OR, AND, NOT, XOR

Relational operators EQ, NE, GT, GE, LT, LE

Shift operators SHR, SHL

Byte-separating operators HIGH, LOW

Bit operator . (Period)

Other operators ()

Table 2-7. Order of Precedence of Operators

Priority Operator
High 1 HIGH, LOW
I 2 + sign, - sign, NOT
3 * (Multiply), / (Divide), MOD, SHR, SHL
4 + (Add), - (Subtract)
5 AND
6 OR, XOR
‘ 7 EQ, NE, GT, GE, LT, LE
Low 8 . (Bit operator)

2-24

_ Operations on expressions are performed according to
rules:

C) Operations are performed according to the order of
precedence given to each operator. If two or more operators
of the same order of precedence exists in an expression,
the operation designated by the leftmost operator is first
carried out.

() An expression in parentheses is carried out before
expressions outside the parentheses.

() Each term in an operation is handled as an unsigned 16-bit
data and the result of the operation is also handled as
an unsigned 16-bit. (However, the result of the operation
designated by the HIGH, LOW, EQ, NE, GT, LT, or LE operator
will be handled as an 8-bit data.)

Example: 65535 = OFFFFH
~1 = -(0001H) = OFFFFH

(@ 1f an overflow occurs in an operation due to its result
exceeding 16 bits, only the low-order 16 bits of the
result become valid and thus an error will not result.
Example: 65535 + 1 = (OFFFFH) + (0001H)

= {(10000H) — O0O000H

2.3.1 Functions of operators

The functions of the respective operators are described in this
subsection,

2-25

Arithmetic Operators

(1)

(2}

+ (ADD) operator

Function

Returns the sum of the value of the 1st term of an expression

and the value of its 2nd term.

Application Example

ORG 100H
START: BR 18+6H i le)

Explanation

The BR instruction causes a jump to "current address + address
6", namely, to address "100H + 6H = 106H".

Therefore, (a) in the above example can also be described as:
é&ART: BR !106H

- {(SUBTRACT) operator

.Function

Returns a difference between the value of the 1st term of an

expression and the value of its 2nd term.

Application Example

ORG 100H
BACK: BR IBACK—3H ;)
Explanation

The BR instruction causes a jump to "address assigned to
BACK - address 3", namely, to address "100H - 3H = OFDH".
Therefore, (b) in the above example can also be described as:
BACK: BR !0FDH

2-26

(3}

(4)

* (MULTIPLY) operator
Function
Returns the product of the value of the 1st term of an

expression and the value of its 2nd term.

Application Example

TEN EQU 10H
MOV A, #TEN%3 ; (o)

Explanation
With the EQU directive, value "10R" is defined in name "TEN".

"#" indicates an immediate data. Expression "TEN*3" is the
same as "10*3" and returns value 30H.

Therefore, (c)} in the above expression can also be described
as: MOV A, #30H

/ (DIVIDE) operator

Function

Divides the value of the 1st term of an expression by the
value of its 2nd term and returns the integer part of the
result with its fractionai part truncated. An error will

result if the divisor is 0.

Application Example

MOV A, #256,750 ; (d)

Explanation

The result of division "256/50" is 5 with remainder 6.

The * operator returns value "5" which is the integer part of
the result of the division.

Therefore, (d)} in the above example can also be described as:
MOV A, #5

2-27

(5)

(6)

+ s5ign

Function

Returns the value of the term of an expression as is.

Application Example

FIVE EQU 45

Explanation

The value "5" of the term is returned without change.
With the EQU directive, value "5" is defined in name "FIVE".

- sign
Function
Returns the value of the term of an expression by twos

complement.

Application Example

NO EQU -1

Explanation

-1 becomes the twos complement of 1.

The twos complement of binary 0000 0000 0000 0001

becomes: 1111 1111 1111 1111

Therefore, with the EQU directive, value "OFFFFH" is defined
in name "NO".

2-28

(7) MOD (Remainder) operator
Function
Obtains the remainder in the result of dividing the value of
the 1st term of an expression by the value of its 2nd term.
An error will result if the divisor (2nd term) is 0.

Application Example

MOV A, #256 MOD 50)

Explanation

The result of division "256/50" is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (e) in the above example can also be described as:
MOV A, #6

2-29

Logical Operators

(1) NOT operator

(2)

Functiocn
Negates the value of the term of an expression on a bit-by-bit

basis and returns the result.

Application Example

MOVW AX, #NOT 3H Y

Explanation

NOT logical operation is performed on value 3H as follows:
NOT) 0000 0000 0000 0011 '
117 1111 1111 1100
The result becomes OFFFCH.

Therefore, (a) in the above example can also be described as:
MOV AX, #0FFFCH

AND operator

Function

Performs an AND (logical sum) operation between the value of
of the 1st term of an expression and the value of its 2nd
term on a bit-by-bit basis and returns the result.

Application Example

MOV A, #110H AND O0FFH : 0}

Explanation

AND operation is performed between two values 110H and
OFFH as follows: -
0000 0001 0001 0000
AND) 0000 0000 1111 1111
0000 0000 0001 0000
The result becomes 10H.

Therefore, (b) in the above example can also be described as:
MOV A, #10H

- {3)

(4)

OR gperator

Function

Performs an OR (logical product) operation between the value
of the 1st term of an expression and the value of its 2nd
term on a bit-by-bit basis and returns the result.

Application Example

MOV A, #0AH OR 1101B 3 e}

Explanation

OR operation is performed between two values 0AH and 1101B
as follows:
0000 0000 0000 1010
OR) 0000 0000 0000 1101
0000 0000 0000 1111
The result becomes 0FH.

Therefore, (c) in the above example can also be described as:
MOV A, #O0FH

XOR operator

Function

Performs an Exclusive-OR operation between the value of the
1st term of an expression and the value of its 2nd term on

a bit-by-bit basis and returns the result.

Application Example

MOV A, #9AH XOR SDH 3)

Explanation

XOR operation is performed between two values 9AH and 9DH
as follows:
0000 0000 1001 1010
XOR) 0000 0000 1001 1101
0000 0000 0000 0111

The result becomes 7H.

Therefore, (d) in the above example can also be described as:
MOV A, #7H
2-31

Relational Operators

(1) EQ (Equal) operator

Function .

Returns QOFFH if the value'of the 1st term of an expression is
egqual to the value of its 2nd term (i.e., true) and OOH if
both values are not equal (i.e., false}.

Application Example

Al EQU 12C4H
A2 EQU 12CoH

MOV A, #A1 EQ (A2+44) ;)
MOV X. #A1 EQ A2 7 &)

Explanation

In (a) above,

expression "A1 EQ (A2+-4)" becomes "12C4H EQ (12C0H+4)".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is equal to the value of the 2nd term.

In (b) above,

expression "A1 EQ A2" becomes "12C4H EQ 12COH".

The operator'compares the value of the 1st term and that

of the 2nd term and returns 00H because the value of the

1st term is not equal to the value of the 2nd term.

(2) NE (Not Equal) operator

Function

Returns OFFH if the value of the 1st term of an expression is
not equal to the value of its 2nd term (i.e., true) and 00H
if both values are equal (i.e., false).

Application Example

Al EQU 56 78H
A2 EQU 5670H

MOY A, #A1 NE A2 i e)
MOV A, #A1 NE (A2+48H) (@
Explanation

In {c) above,

expression "A1 NE A2" becomes "5678H NE 5670H".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is not equal to the value of the 2nd term.

In (d) above,

expression "A1 NE (A2+8H)" becomes "5678H NE (5670H+8H)".
The operator compares the value of the 1st term and that

of the 2nd term and returns 00H because the value of the

1st term is equal to the value of the 2nd term.

2-33

(3) GT (Greater-Than) operator
Function
Returns OFFH if the value of the 1st term of an expression is
greater than the value of its 2nd term (i.e., true) and 00H
if the value of the 1st term is equal to or less than the

value of the 2nd term (i.e., false).

Application Example

Al EQU i023H
A2 EQU 1013H

MOV A, #A1 GT AZ : 3 le)

MOV X, #A1 GT (A2+10H) i)
Explanation

In (e} above, .

expression "A1 GT A2" becomes "1023H GT 1013H".

The operator compares the value of the 1st term.and that
of the 2nd term and returns OFFH because the value of the
1st term is greater than the value of the 2nd term.

In (f) above, :

expression "A1 GT (A2+10H)" becomes "1023H GT (1013H+10H)".
The operator compares the value of the i1st term and that
of the 2nd term and returns .00H because the value of. the

1st term is equal to the value of the 2nd term.

. {4) GE (Greater-than or Equal)} operator

Function

Returns OFFH if the value of the 1st term of an expression is
greater than or equal to the value of its 2nd term (i.e.,
true) and 00H.if the value of the ist term is less than the

value of the 2nd term (i.e., false).

Application Example

Al EQU 2037H
A2 EQU 2015H

MoV A, #A1 GE A2 ; (g)
MOV X, #A1 GE (A2+23H) ;i

Explanation

In (g) above,

expression "A1 GE A2" becomes "2037H GE 2015H".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is greater than the value of the 2nd term.

In (h) above,

expression "A1 GE (A2+23H)" becomes "“2037H GE (2015H+23H)".
The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the

1st term is less than the value of the 2nd term.

2-35

(5) LT {Less-Than) operator

Function 7 7
Returns OFFH if the value of the 1st term of an expression is
less than the value of its 2nd term (i.e., true) and 00H if
the value of the 1st term is equal to or greater than the
value of the 2nd term (i.e., false).

Application Example

Al EQU 1000H
AZ EQU 102¢H

_Mov A, #A1 LT A2 1)
MOV X, #(A1+20H) LT A2 i}

Explanation

In (i) above,

expression "A1 LT A2" becomes "1000H LT 1020H",

The operator compares the value of the 1st term and that
of the 2nd term and returns OFFH because the value of the
1st term is less than the value of the 2nd term.

In (j) above,

expression "(A1 + 20H) LT A2" becomes "(1000H + 20H) LT
1020H". The operator compares the value of the 1st term
and that of the 2nd term and returns 00H because the value
of the 1st term is equal to the value of the 2nd term.

2-36

(6) LE {Less-Than or Equal) operator

Function ,

Returns OFFH if the value of the 1st term of an expression is
less than or equal to the value of its 2nd term (i.e., true)
and O0H if the value of the 1st term is greater than the value

of the 2nd term (i.e., false).

Application Example

Al EQU 103AH
A2 EQU 1040H

MOV A, #A1 LE A2 ;)
MOV X, #(A1+7H) LE Az ;1)

Explanation

In (k) above,

expression "A1 LE A2" becomes "103AH LE 1040H".

The operator compares the value of the 1st term and that
of the 2nd term and returns OFFH because the value of the
1st term is less than the value of the 2nd term.

In (1) above,

expression "(A1 + 7H) LE A2" becomes "(103AH + 7H) LE 1040H",
The operator compares the value of the 1st term and that

of the 2nd term and returns 00H because the value of the

1st term is greater than the value of the 2nd term.

2-37

Shift Operators

(1) SHR (shift Right) operator
Function
Returns a value obtained by shifting the value of the 1st
term of an expression to the right the number of bits
specified by the value of the 2nd term. In this case, zeroes
equivalent to the specified number of bits shifted move in
from the MSB side.

Application Example

MOV - A, #1AFH SHR 5 ;)

Explanation
This operator shifts value "1AFH" to the right by 5 bits.

0000 0001 1010 111

‘}’ 0 0000 1101Eh
0000 Mo T

N L
0's are inserted. Right-shifted by 5 bits

As the result of the Shift Right operation, value ODH is
returned.

Therefore, {(a) in the above example can also be described as:
MOV A, #O0DH

2-38

- (2) SHL (Shift Left)} operator
Function
Returns a value obtained by shifting the value of the 1st term
of an expression to the left the number of bits specified by
the value of the 2nd term. In this case, zeroes equivalent to
the specified number of bits shifted move in from the-LSB

side.

Application Example

MOV A, #11H SHL 3 ; (b}

Explanation
This operator shifts value "11H" to the left by 3 bits.

poojo 0000 0001 iij;j

0000 0000 1000 1'000
e et
Left-shifted by 3 bits. 0's are inserted.,

As the result of the Shift Left operation, value 88H is
returned.

Therefore, (b) in the above example can also be described as:
MOV A, #88H

2-39

Byte Separating Operators

(1) HIGH operator

Function
Returns the high-order 8-bit value of the term of an
expression.

Application Example

ORG 1234H
START: '
MOV A, #4HIGH START
Explanation

Because label "START" has value 1234H, the HIGH operator
returns the high-order 8 bits of the value, namely, 12H.
Therefore, (a) in the above example can also be described as:
MOV A, #12H '

{2) LOW operator

Function
Returns the low-order 8-bit value of the term of an
expression.

Application Example

ORG 5678H
WORK:
MOV A, #LOW WORK + bl
Explanation

Because label "WORK" has value 5678H, the LOW operator
returns the low-order 8 bits of the value, namely, 78H.
Therefore, (b) in the above example can also be described as=:
MOV &, #78H

- Other Operators

(1)

. (Bit position specification)

Function

Calculates a bit address from the value indicated by the
1st term of an expression and the bit position indicated

by the 2nd term of the expression and returns the result.

Application Example

MOV CY,O0FE20H.3

Explanation

This operator sets the value of the 3rd bit at address
OFE20H in the Carry (CY) flag.
Assuming that data 2BH is stored at address 0FE20H,

oFEz20H |ojol1|oliqoi1]1

0 {i.e., the value of the 3rd bit) is set in the CY flag.

NOTE 2-2

The value of the 1st term of an expression must be
within the range of OFE20H to OFFFFH.

The value of the 2nd term of the expression must be
within the range of 0 to 7.

2-41

(2) ()

Function

Causes an operation in parentheses to be performed prior to
operations outside the parentheses,

This operator is used to change the order of precedence of

other operators.

Application Example

MOV A.=(4+3)%2

Explanation

(d+3)*2

®
@

Calculations are performed in the order of expressions
M and @ and value 14 is returned’ as the result.
If parentheses are not used as shown below,

4+3%2

[o

®

calculations are performed in the order of expressions
(M and @ and a different value 10 is returned as the
result. -
See Table 2-7 for the order of precedence of operators.

2.3.2 Restrictions on Operations
The operation of an expression is performed by connecting terms
with operator(s). Elements that can be described as terms include
constants, $, names, and labels. Each term has a relocation
attribute and a symbol attribute,

Depending on the types of relocatable attribute and symbol
attribute inherent in each term, operators that can work on the
term are limited. Therefore, when describing an expression,

it is important to pay attention to the relocation attribute and
symbol attribute of each of the terms constituting the expression,

{1) Operators and relocation attributes
As previously mentioned, each of the terms which constitute an
expression has a relocation attribute. Terms can be divided
into three types when classified by their relocation v
attributes: Absolute term, Relocatable term, and External
reference term.

Types of relocation attributes in operations, nature of each

attribute, and terms applicable to each attribute are shown
in Table 2-8,

Table 2-8. Types of Relocation Attributes

Type Nature Applicable term

Absolute Term whose value o Constants

term is determined o Labels defined within an
at assembly time absolute segment

o $ indicating the location
address defined within an
absolute segment

o Names defined the above
constants, labels, or $

Relocatable Term whose value o Labels defined within a
term is not determined relocatable segment
at assembly time o $ indicating the location

~address defined within a
relocatable segment
o Names defining relocatable
labels

Table 2-8. Types of Relocation Attributes (contd)

another module -

directive

Type Nature Applicable term

External Term which exter- 0 Labels defined with EXTRN
reference nally references directive

term the symbol of o Names defined with EXTBIT

Combinations of the type of operator

operator can work are shown in Table 2-9.

Table 2-9. Combinations of Operators

and terms on which each

and Terms by Relocation

Attribute
Relocation attribute . X: ABS- [X: ABS X: REL X: REL
of term) :
Type of operator Y: ABS Y: REL Y: ABS |¥Y: REL
+ Y A R R =
X .- A - R A*
X * Y A - - -
X Y A - - -
X MOD ¥ A - - -
X SHL Y A - _ -
X SHR ¥ A - - -
X EQ Y A _ - A%
X LT Y A - _ A*
X LE Y A - - A*
X GT Y A - - A
X GE Y A _ - A%
X NEY A - - AK
X AND ¥ A - - -
X OR Y A - - -
X XOR Y A - - -
NOT X A A - -
+ X A A R R
- X A A - -
HIGH X A A R R
LOW X A A R R
X . Y A - R -

[28]
I
b
oS

. <Legend> ABS: Absolute term

REL: Relocatable term

A : The result of the operation becomes an absolute
term.

R : The result of the operation becomes an relocatable
tern.

- : The operation cannot be performed.

* The operation is allowed only between the symbols defined
within the same segment.

The following four operators can work on external reference terms:
+, HIGH, LOW, and . (Bit position specification). (However, note
that only one external reference term can be described in an
expression.)

~Combinations of the type of operator and external reference terms

on which each operator can work are shown in Table 2-10.

Table 2-10. Combinations of Operators and Terms by Relocation

Attribute {External Reference Term)

Relocation attribute X: ABS | X: EXT | X: REL | X: EXT | X: EXT

of term
Type of operator Y: EXT | ¥Y: ABS | ¥: EXT | ¥Y: REL | Y: EXT
X + Y - E - - -
+ X A E R E E
HIGH X A E R E E
LOW X A E R E E
X . ¥ E E - B -
<Legend> ABS: Absolute term
REL: Relocatable term
EXT: External reference term
A : The result of the operation becomes an absolute

term.

R : The result of the operation becomes an relocatable
term.

E : The result of the operation becomes an external
reference term.

The operation cannot be performed.

2-45

(2) Operators and symbol attributes

As previously mentioned, each of the terms which constitute an

expression has a symbol attribute in addition to a relocation

attribute. Terms can be divided into three types when
classified by their system attributes: NUMBER term, ADDRESS
term, and BIT term.

Types of system attributes in operations and terms applicable

to each attribute are shown in Table 2-11.

Table 2-11. Types of Symbol Attributes

Type

Applicable term

NUMBER term

o Names and labels which have NUMBER attribute
0 Constants

ADDRESS term

Names and labels which have ADDRESS attribute

BIT term

o
o $ indicating the location counter
o Names which have BIT attribute

Combinations of the type of operator and terms on which -each

operator can work are shown in Table 2-12.

Operations on BIT terms are possible only with unary operator

"+ XH.

Attribute
symbol attribute X:ADDRESS |X:ADDRESS |X:NUMBER |X:NUMBER
of term
Type of operator Y:ADDRESS {Y:NUMBER Y:ADDRESS {Y:ADDRESS
X + Y - A A N
X - ¥ N A -
X * ¥ - - - N
X / X - - ~ N
X MOD ¥ - - - N
X SHL Y — - - N
X SHR Y - - - N
X EQ Y N - - N
X LT Y N - - N
X LE Y N - - N
X GT Y N - - N
X GE Y N - - N
X NE Y N - - N
X AND Y - - - N
X OR Y — - - N
X XOR Y - - - N
NOT X - - N N
+ X A A N N
- X - — N N
HIGH X A A N N
LOW X A A N N
X . XY - B - B
<Legend> ADDRESS: ADDRESS term
NUMBER : NUMBER term
A - The result of the operation becomes an ADDRESS
term. |
N : The result of the operation becomes a NUMBER
term.
B « The result of the operation becomes a BIT term.

The operation cannot be performed.

(3) How to check restrictions on the operation
An example of an operation by the relocation attribute and
symbol attribute of each term is shown here.

Example: BR $TABLE+5H) N
Here, assume that "TABLE" is a label defined in a

relocatable code segment.

(@D Operator and relocation attribute
Because "TABLE+5H" is "relocatable term + absolute term",
apply this operation to Table 2-9, "Combinations of
Operators by Relocatable Attribute".
Typé of operator — X + Y
Relocation attribute of term —— X:ABS, Y:REL
From the table, you will find that the result becomes
a relocatable term.
() Operator and symbol attribute
Because "TABLE+5H" is "ADDRESS term + NUMBER term",
apply this operation to Table 2-12, "Combinations of
Operators and Terms by Symbol Attribute".
Type of operator —— VX + Y
Symbol attribute of term —— X:ADDRESS, Y:NUMBER
From the table, you will find that the result becomes
an ADDRESS term.

2-48

2.4 Characteristics of Operands
Instructions and directives requiring an operand or operands
differ from one type of instruction to another in the size and
address range of the required operand value and in the symbol
attribute of the operand.
For example, an instruction "MOV r1, #byte" functions to transfer
the value indicated by "byte" to register "r1". In this case,
because r1 is an 8-bit register, the size of the data "byte" to
be transferred must be 8 bits or less.
If an instruction is described as "MOV RO, #100H", an assembly
error occurs because the size of the 2nd operand "100H" of the
instruction exceeds the capacity of the 8-bit register RO.
So, when you describe an operand, attention must be paid to the
following points:
o Is the size of the operand value or its address range
suitable for the operand (numerical data, name, or
label) of the instruction?
o Is the symbol attribute suitable for the operand (name
or label} of the instruction?

2.4.1 Size and address range of operand value

Certain conditions are set for the size and address range of
the value of a numerical data, name, or label that can be
described as the operand of an instruction or directive.

With instructions, conditions for the size and address range
of an operand value are governed by the operand representation
format of each instruction. With directives, such conditions
are governed by the type of directive.

These conditions are shown in Tables 2-13 and 2-14 below.

2-49

Table 2-13. Conditions for Size of Operand Value

Instructions Representation Size of operand value
format of operand
word 16 bits max.
byte 8 bits max.
bit 3 bits max.
n 3 bits max,
Directives Type of directive Size of operand value
EQU .16 bits max,
SET ‘16 bits max.
DB 8 bits max.
DW 16 bits max.
DS 16 bits max.
NOTE 2-3

When describing names or labels as operands,
or labels with the following attributes will be handled as
16-bit data. o

o Name or label with symbol attribute ADDRESS

o Name or label defined with the EXTRN directive
If any of these names or labels is described as an 8-bit

note that names

operand, an error will result. To avoid this error, describe
the name or label by correcting it to an 8-bit value with
the HIGH or LOW operator.

2-50

Instructions | Representation Address range of operand value
format of operand
saddr OFE20H to OFF1FH
saddrp Even value of O0FEZ20H to OFF1FH
addr13 0000H to 1FFFH
addri16 0000H to 3EFFH
addr11 0800H to OFFFH
addr5 Even value of 0040H to OO7EH
Directives Type of directive | Address range of operand value
ORG 0000H to OFFFFH
BR 0000H to QOFEFFH

2.4.2 Symbol attributes and relocation attributes of operands
When describing a name, label, or $ (location counter) as the
operand of an instruction, the name or label may or may not
be described as an operand depending on the symbol attribute
and relocation attribute of the operand as the term in an
expression (see 2.3.2, "Restrictions on operations”) or the
reference direction of the name or label.

Names and labels are referenced in two directions: Backward
and Forward.

0 Backward reference Name or label to be referenced
as an operand has been defined
in a previous line.

o Forward reference Name or label to be referenced
as an operand has been defined
in a subsequent line.

Example:

NAME TEST
CSEG
Li1:
Backward reference
BR JLi—
BR L2 ._....._)
L2: —] Forward reference
END

These attributes of the operands of instructions and

directives are shown in Tables 2-15 and 2-16 below.

“Table 2-15. Operand Attributes of Instructions

Symbol
attribute

NUMBER

ADDRESS

NUMBER

or

ADDRESS

Relocation
attribute

Absolute

term

Absolute

term

Relocatable

term

External

ref.

term

Reference
Operand
format

BW FW

BW

FW

BW FW

BW

FW

Special

function

register
(sfr

name)

sfr
(FFOOH -
FFFFH)

sfrp
(FFOOH -
FFFFH)

cf.2

saddr
(FE20H -
FF1FH)CE. 1

(o]
(FFOOH-
FF1FH)

saddrp

(Even value
of FE20H -
FF1FH) Cf.1

(o)
(FFOOH-
FF1FR)

addr13
addris

addr1i
{800H -
FFFFH)

Cf.3 Cf.3

addr5

{Even value
of 40H -
7EH)

Cf.4 Cf.4

2-53

Table 2-15. Operand Attributes of Instructions {(contd)

can be described.
3. Only labels defined in the code segment with relocation
attribute FIXED can be described.
4, Only labels defined in the code segment with relocation
attribute CALLTO can be described.
5. A name or label with symbol attribute ADDRESS, $ (whlch
indicates the current location counter), and an external
reference term are handled as 16-bit data regardless
of their value range. If any of these symbols is
described as operand "byte", an error will result. Change
the operand value to an 8-bit data with the HIGH or LOW
operator,
6. A term with symbol attribute ADDRESS cannot be described
for forward reference as an operand "bit" or
you describe such operand by mistake, an error will not
occur. However, note that correct object code generation
may not be expected from the operand.

l!nll .

Symbol NUMBER ADDRESS NUMBER Special
attribute or function
| ADDRESS' register
Relocation |Absolute | Absolute Relocatable Exterhal (sfr
attribute | term term term - |ref. term .hame)
Reference BW FW BW FW [BW FW BW FW.
Operand
format~
word o o o o o} o o o -
(16 bits)
byte o o a a b N s - -
(8 bits) cf.5]Ccf.5 cf.5 |CE.5 |Cf.5
bit o) o) (o} o o] - o - -
(3 bits) Cf.6
n o] o o o o - o} - -
(3 bits) cf.6
BW ... Backward reference FW ... Forward reference
© ... Can be described. - ... Cannot be described.
‘A «.. May be described by changing it to an 8-bit data.
NOTE: 1. UPD787112 4esessessasacacnssasssss FE40H to FFIFH
uPD78122, uPD78124vevsesas.. FE20H to FF1FH
2. Only the register names capable of 16-bit manipulation

Even if

Table 2-16., Operand Attributes of Directives

-

BW ... Backward reference
0 ... Can be described.
A s+ May be described by changing it to an 8-bit data.

FW

... Forward reference

.+« Cannot be described.

Symbol NUMBER ADDRESS BIT
attribute
Relocation Abs. |Ext. Abs. | Rel. |Ext. Abs. |Rel. | Ext.
attribute term |term term | term |[term ref. {term |term
Reference BW| FW| BW [FW | BW| FW| BW| FW |BW [FW | BW| FW| BW| FW| BWIFW
Directive
ORG - ol-1{- |- o |-1-1- |- |- -l = = |~ |=
EQU O bl - - (o) - o] - -~ - O - O - o -
SET o|- |- |~ - e - - = |- - - |- 1= |= |~
DB O | o a |- Al &l & & b R A I N R
(see Note)
DW olo |o |- o |o|lo |o o |- - |- d=1=-1-
DS ol- |- |- o |-1-1- 1- |- - = t=- = |- |-
BR clo |o |- c |lojo |o |Jlo |- - |-]=-1=- 1=]-
Abs., term ... Absolute term Rel. term ... Relocatable term
Ext., term ... External reference term

NOTE: A name or label with symbol attribute ADDRESS, $ (which

indicates the current location counter),

and an

external reference term are handled as 16-bit data

regardless of their value range. If any of these

symbols is described as the operand of the DW

directive, an error will result. Change the operand
value to an 8-bit data with the HIGH or LOW operator.

CHAPTER 3. DIRECTIVES

3.1 Overview.of Directives
Directives are described in a source program just the same as
ordinary instructions. Directives are pseudoinstructions in a
program which give the assembler processor various instructions
necessary for this package to perform a series of processes.
Instructions will be translated into object codes (i.e., machine
language), but directives will not, as a rule, be converted into
object codes.
Directives are available in seven types as listed in Table 3-1 and
have the following major functions:

o Facilitate description of source programs.

o Initialize memory and reserve areas.

o Provide the information required for the assembler, linker,

and locater to perform their intended processing.

Table 3-1. List of Directives

No. | Type of directive Directives
1 Segment definition CSEG, DSEG, BSEG, ORG, ENDS
directives
2 Symbol definition EQU, SET
directives

3 | Memory initialization/| DB, DW, DS, DBIT
area reservation

directives
Linkage directives PUBLIC, EXTRN, EXTBIT, NAME
Automatic branch BR

instruction selection

directive
6 Macro directives MACRO, LOCAL, REPT, IRP, EXITM,
ENDM
7 Assembly termination END
directive '

A detailed description of each of these directives will be
provided in the following sections.

3-1

In the description format of each directive, "I 1" indic;tes
that the parameter in braces may be omitted from specification
and "..." indicates the repetition of description in the same
format,
For example,; if the description format reads:
[(size)]){initial valuel, ...]]

you may. describe any of the following three:

o (size)

o (gsize) initial value 1, initial value 2, initial value 3

o initial value 1, initial value 2

3-2

3.2 Directives for Segment Definition

A source module is described in units of segments.

Segment definition directives are used to define these segments.

Segments are divided into the following five types:

o Code segment

o Data segment

o Bit segment

o Absolute segment

o Stack segment

To which address range in memory each segment will be allocated

is determined by the type of segment.

Table 3-2 shows the method of defining each segment and the

memory address area in which each segment will be allocated.

Table 3-2. Segment Definition Methods and Memory Address

Allocation
Type of Method of Memory address area to be
segment definition allocated to each segment

Code segment

CSEG directive

Within the internal ROM

area

Data segment

DSEG directive

Within the internal RAM
area

Bit segment

BSEG directive

Wwithin the saddr area in
the internal RAM

Absolute

segment

ORG directive

Addresses specified by
ORG directive

Stack segment

Automatically
generated by
the assembler

Within the internal RAM
area

If the user wishes to determine the memory allocation to a

segment, describe (define) the segment as an absolute segment.

An example of memory allocation to segments is shown in

Fig. 3-1.

Fig. 3-1. Memory Allocation to Segments

<Source program’

—— —— —— M — e — . ——— e ey

Source module

Source Source
module module

<Memory> 0H

<One ‘source
module>

Data segmeﬁt
. ROM
lAbsclute segment
which belongs to
data segment
Bit segment 3
Code segment .
RAM
saddr
Absolute segment
which belongs to ;/”’/’/””//’////’/,

-

code segment

4
FFFFH
Stack segment

CSEG

code segment

(1) CSEG (code segment)

Description?Format

-

Symbol Mnemonic
field field

Operand
field

f segment name] CSEG

[relocation attribute]

Comment
field
[; comment]

Function

o The CSEG directive indicates to the assembler the start of a

code segment.

o All instructions described after this directive until the

re-appearance of any segment definition directive (CSEG,
DSEG, BSEG, ORG, or ENDS) in the source module will belong
to the code segment and will be allocated within the ROM

address area upon conversion into machine language.

Fig. 3-2. Relocation of Code Segment

¢<Source module>

NAME T1

)

DSEG

CSEG

~ END

}

{Memory>
‘ROM
ode
segment
RAM

o If the relocation attribute of a code segment is

specified in the Operand field of the CSEG directive,

the address range to be allocated to the code segment can

be made further definitive.

There are two types of relocation attributes as shown in

Table 3-3.

3-5

Table 3-3. Functions of Relocation Attributes

Relocation Function
attribute

CALLTO Instructs the assembler to allocate the code
segment within addresses 40H to 7FH. B

FIXED Instructs the assembler to allocate the code
segment within addresses 800H to OFFFH.

Use
o Describe instructions, DB directive, or DW directive
_in the code segment defined by the CSEG directive.
(However, to allocate the segment from a fixed address,
the ORG directive must be described.)
o Specify relocation attributes in the following cases:

Table 3-4. Uses of Relocation Attributes

Relocation Use
attribute
CALLTO Code segment which defines the entry

address of a subroutine to be called
with a one-byte instruction "CALLT"

FIXED Code segment which defines a subroutine
to be called with a two-byte instruction
"CALLF"

o Description of one functional unit such as a subroutine
should be defined as a single code segment. If the size
of the unit is relatively large or if the subroutine is
highly versatile (can be utilized for development of other
programs), the subroutine should be defined as a single
module.

3-6

Explanation

0 By describing a segment name in the Symbol field of the

CSEG directive,

the code segment can be named.

If no segment name is specified for a code segment, the

assembler will automaticallf give a segment name to the

code segment. This default segment name is available

in three types and is assumed appropriately according to the

type of code segment.

The type of code segment is determined by the type of

relocation attribute. The relationship of default segment

names and code segment types is shown in Table 3-5,

Table 3-5. Default Segment Names of Code Segments

Default Code segment Classification of code

segment name | type segment type

CSEG CSEG Code segment without specified
relocation attribute

CSEGTO CSTO Code segment with relocation
attribute "CALLTO"

CSEGFX CSFX Code segment with relocation

attribute "FIXED"

o If two or more code segments of the same segment type

exist in a source module, these code segments must have

the same segment name.

(See Application Example 4.)

This is because of that the code segments of the same

segment type described in a source module will be

processed as a single code segment within the assembler.
(See Application Examples 5 and 6.)

o Code segments with the same segment name and the same

segment type can be described in two or more different

modules. These segments are called the same named segments.

The same named code segments will be combined into a single

code segment at linkage time.

Application Examples

Example 1

(1)

(2}

(3)

(4)

NAME SAMP1

CSEGC CALLTO Q)
TLAB1 :DW LAB1

CSEG ;@)

CALLT {(TLAB1) (3

CSEG 3 (1)
LAB1:

END

1 ' -

Within this code segment, the entry address of a
subroutine to be called by the CKLLT instruction is
defined. Therefore, relocation attribute "CALLTO" must be
specified for this code segment.

Within this code segment, instructions which may be
allocated to any locations in the ROM area are descrlbed
Therefore, no relocation attribute will be specified for
this code segment.

Label "TLAB1" is described to indicate the address in
which the entry address of the subroutine is stored.

In this code segment, the subroutiné to be called

by the CALLT instruction in (3) is defined.

Example 2 NAME SAMP3

CSEG FIXED Q)
suB1:

CSEG

CALLF !SUB! 12

END

(1) Within this code segment, the entry address of a
subroutine to be called by the CALLF instruction is
defined. Therefore, relocation attribute “"FIXED" must
be specified for this code segment.

(2) Label "SUB1" is described as the operand of the CALLF
instruction to indicate the address in which the entry
address of the subroutine is stored.

Example 3
NAME SAMP4
SN41 CSEG V(D
SNd42z CSEG y (@ This description is
erronecus.
END

(1) A code segment is defined without relocation attribute
specification (segment type "CSEG"). Segment name is
"SN41".

(2) A code segment without specified relocation attribute
{segment type "CSEG") has already been defined in (1)
above. Therefore, this description results in an error.

‘Change the segment name to "SN41".

3-9

Example 4 - NAME SAMPS

§N5 CSEG H4)]
ORG 1000H ;{2
SN5 CSEG k)|

END

(1) A code segment is defined without relocation attribute
specification (segment type '"CSEG"). Segment name is
"SN5".

(2) An absolute segment is defined with start address
"1000H". | '

{3) This segment will be processed as a continuous segment
which follows the code segmént defined in (1) above, with
segment type "CSEG" and segment name "SN5". _

The first address of the segment defined in (3)7will be
the address next to the last address of fhe segment

defined in (1) above.

Example 5 <Module 1>
NAME SAMP61
SN6 CSEG)
END
<Module 2>
NAME SaAMP62
SNé CSEC (@
END

(1) & (2)

: Code segment "SN6" defined in (1) in module 1 becomes
the same in segment name and segment type as the code
segment defined in (2) in module 2. Therefore, these
two code segments will be processed as a single code

segment at linkage time.
3-10

DSEG data segment DSEG

(2) DSEG (data segment)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[segment namel DSEG None [;comment]
Function

o The DSEG directive indicates to the assembler the start of a
data segment,

0 Memory areas defined by the DS directive after this
directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, or ENDS) in the source
module will belong to the data segment and will be finally
allocated within the RAM address area.

FPig. 3-3, Relocation of Data Segment

¢Source module> (Memory>
NAME T2
DSEG
Data
S segment
ROM
CSEG

END : RAM

3-11

Use

o Mainly describe the DS directive in the data segment defined

by the DSEG directive. The data segment will be allocated
within the RAM area. Therefore, no instructions can be 7
described in any data segment. _
In a data segment, the DS directive must be described to =
reserve a RAM work-area to be used by the program and a
label must be given to the address of each work area.
When describing a source progrém, this label is used.
Each area reserved as a data segment will be allocated
by the locater so that it does not overlap with any
other work areas-on the RAM (stack area, general-purpose ~
register area, and work areas defined by other modules).
A label defined within a relocatable data segment capnot"
be described as a label to indicate an address in the
short direct addressing area. i
Accessing data in the short direct addressing area can
be processed by instructions with a short word length
and a fewer number of clocks. Use this area by'specifying
absolute addresses for effective utilization.
Short direct addressing area:

UPD78112 vvveeaaesesss.OFE40H to OFF1FH

uPD78122, ubD78124 ... OFE20H to OFF1FH
A label defined within a relocatable data segment can be
described only as an operand which is indicated by
the operand representation format "addri13", "addrié6", or

"word".

Explanation

o By describing a segment name in the Symbol field of the

DSEG directive, the data segment can be named.

If no segment name is specified for a data segment, the
assembler will automatically give a default segment name
"DSEG" to the data segment.

o All data segments will have "DSEG" as their segment type.

3-12

o If two or more data segments exist in a source modu

le,
these data segments must have the same segment name. (See
Application Example 2.)

This is because of that two or more data segments described
in a source module will be processed as a single data
segment within the assembler.

Data segments with the same segment name can be described in
two or more different modules. These segments are called the
same named segments.

The same named data segments will be combined into a single
data segment at linkage time.

Data segments are segments which define the RAM addresses

to be used in the source module. So} define these segments

in the early part of the module body.

Application Examples

Example 1 " NAME SAMP1

(1)

(2)
(3)

(4)
(3)

DSEG ' L)
WORK1:DS§
WORK2:DS

CSEG

N e

MOV A, !WORKI1 (2
MOV A .,WORK1 ;3

This description is
‘erroneous.

MOVW DE,=WORK2 (4
MOVW aX, (DE)

This ééscription is
erroneous.

MOVW AX,WORK2 {9

END

The start of a data segment is defined with the DSEG
directive.

This description corresponds to '"MOV A, !addri6(addr13)".
This description corresponds to "MOV A, saddr".
Relocatable label "WORK1" cannot be described as
"saddr". Therefore, an error will occur as a result
of this description.

This description corresponds to "MOVW rpil,#word”.
This description corresponds to "MOVW AX,saddrp”.
Relocatable label "WORK2" cannot be described as
"saddrp". Therefore, an error will result as a
result of this description.

3-14

Example 2

(1)

(2)

(3)

(4)

NAME SAMP2
DATA! DSEG)
DATA2 DSEG . (2 This description is
erronecus.
DSEG 13 This description is
erronecus. .
DATA1l DSEG s
END

A data segment with segment name "DATA1" is defined
with the DSEG directive.

A data segment has already been defined in (1) above.
The segment name of the segment defined in {2) must

be "DATA1", or an error will occur.

If no segment name is specified, "DSEG" is assumed as
the segment name. Therefore, an error will also occur
in this case for the same reason as (2) above.

This segment will be processed as a continuocus segment
which follows the data segment defined in (1) above.
The first address of the segment defined in (4) will be
the address next to the last address of the segment
defined in (1) above.

3-15

BSEG

bit segment

(3) BSEG (bit segment)

Description Format

Symbol Mnemonic Operand
field field field
[segment name] BSEG None

Comment
field

[;comment}r

Function

o The BSEG directive indicates to the assembler the start of a

bit segment.

o A bit segment is a segment. wﬁich defines the.RAM addresses

to be used in the source module.

0 Memory areas defined by the DS directive after this
directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, |
module will belong to the bit segment and will-be finally
allocated within the RAM address area OFE20H to OFF1FH.

Figu 3—41

¢Source module>

NAME T3

BSEG

)

Bit
segment

DSEG

CSEG

END

(Memory?

ROM

b s —— s ————— —

or ENDS) in the source

Relocation of Bit Segment

0H

FE20H

FF1FR

-Use

o Describe the DBIT directive in the bit segment defined

by the BSEG directive. (See Application Examples 1 and 2.)
The bit segment will be allocated to the short direct
addressing area in the RAM. Therefore, no instructions can
be described in any bit segment.
Short direct addressing area:

uPD78112 ...eveveeeee..0FE40H to OFFIFH

uPD78122, uPD78124 ... OFE20H to OFF1FH
In a bit segment, the DBIT directive must be described to
reserve a one-bit work area to be used by the program and a
name must be given to the bit address.
When describing a source program, this name is used.
Therefore, a bit segment defining this name should be
described at the early part of the module body. (See
Application Example 1.)
Each area reserved as a bit segment will be allocated
by the locater so that it does not overlap with any
other data segments or work areas.
A bit segment will be allocated without consideration to
any byte boundary. If a bit address is to be defined with
attention paid to a byte boundary, define the bit address
with the EQU directive. (See Application Example 2.)
For the bit address map, see Table 3-7 in 3.3 (1), "EQU

directive".

Explanation

0 By describing a segment name in the Symbol field of the

BSEG directive, the bit segment can be named.

If no segment name is specified for a bit segment, the
assembler will automatically give a default segment name
"BSEG" to the bit segment.

o All bit segments will have "BSEG" as their segment type.

The BSEG directive can be described only once in a

source module. (See Application Example 3.)

Bit segments with the same segment name can be described in
two or more different modules. These segments are called the

same named segments.

data segment at linkage time.

0 No labels can be defined in a source module.
The ORG directive cannot be described in a source module.
(See Application Example 3.)
The following directives and all control instructions
can be used in a bit segment:
Directives: DBIT, EQU, SET, MACRO, REPT, IRP

Application Examples

Example 1
NAME SAMP1

BSEG Y
B1 DBIT
B2 DBIT
B3 DBIT

CSEG
MOV1 CY.B1 v (2

ANDI CY,Bz (3

END

(1) A bit segment is defined with the BSEG directive.
Within the bit segment, a bit work area is defined
for each bit with the DBIT directive. A bit segment
should be described at the early part of the module
body. ,

(2) This description corresponds to "MOV1 CY, saddr.bit".

{(3) This description corresponds to "AND1 CY, saddr.bit".

Example 2

(1)

(2)

NAME SaAMP2

FLAG EQU OFEZz0H

FLAGO EQU FLAG.O 3 ()

FLAG1 EQU FLAG.1 ()
BSEG

FLAG2 DBIT 12
CSEG

MOV CY,FLAGO ; (3

MOVl CY.FLAGZ2 ;{4

END

Bit addresses (Bit 0 and Bit 1 of OFE20H) are defined
with consideration given to byte address boundaries.
Bit address FLAG2Z defined in the bit segment is
allocated without consideration to any byte address

boundary.
(3) This description can be substituted with "MOV1 CY,
FLAG.0". Here, FLAG indicates a byte address.
in this case for the same reason as (2) above.
(4) In this description, no consideration is given to
byte addresses.
Example 3 NAME SAMP3
BSEG
ORG 100H (1) This description is
' erroneocus.
BSEG 1 (2 This description is
’ erroneous,
END

(1)

(2)

This description results in an error, because the
ORG directive has been described in the bit segment,
The BSEG directive cannot be described more than once
within the same module.

3-19

ORG . origin

(4) ORG (origin)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[segment name] ORG expression [; comment]
Function

o The ORG directive sets the value of the expression specified

by its operand in the location counter.

o Instructions described or memory areas reserved after this

directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, or ENDS) in the source

module will belong to the absolute segment and will be

allocated beginning with the address specified in the

operand of this directive.

Fig. 3-5. Relocation of Absolute Segment

¢<Source module>

NAME T4
DSEG
ORG OFE20H
Absolute
segment
CSEG
ORG 1000H
Absolute
segment
END

<Memory?

ROM

b o —— —— —

3-20

1000H

OFEZ20H

o Describe the ORG directive to start allocation to a code
segment or data segment from a specific address.

o To store an interrupt branch address in the vector téble
area (0OH to 3FH), specify the address with the ORG |
directive. (See Application Example 2.)

Explanation

o The absolute segment defined with the ORG directive belongs
to the code segment or data segment defined with the

CSEG or DSEG immediately before the ORG directive.

Within an absolute segment which belongs to a data segment,
no instructions can be described.

No absolute segment can be defined following a bit segment.
By describing a segment name in the Symbol field of the

ORG directive, the absolute segment can be named.

If no segment name is specified for an absolute segment, the
assembler will automatically give a default segment name
"ASEGn" to the absolute segment (where n is a value in the
range of 1 to 10 and is given in the order of segment
description within the source module}.

All absolute segments will have "ASEG" as their segment
type.

If a name or label is to be described as the operand of

the ORG directive, the name or label must be an absolute
term which has already been defined in the source module.
"Addresses OH to 3FH are used as a vector table area, and
addresses 40H to 7FH, as a table area for CALLT instruction.
If any address lower than 7FH is specified as the operand
of the ORG directive, the assembler will output a warning
message to the console and an assembly list,

If no CSEG or DSEG directive has been described before

the ORG directive, the absolute segment defined by the

ORG directive is assumed to be an absolute segment in a

code segment.

NOTE 3-1

The ORG directive can be described up to 10 times within
a source module. An error will result if 11 or more
absolute segments are described within the module. '

Application Examples

NAME SAMP1

Example 1
DSEG
SADR ORG GFE20H 2 {3)
SADR1: DS 1
SADR2: DS 1

SADR3: DS 2

MAINO ORG 100H

MOV A, SADR]1 () —— This description is
' erroneocus. '
CSEG 13-
MAINI ORG 1000H ()

MOV A, SADR2
MOVW AX,SADR3

END

(1) An absolute segmeht which belongs to a data segment is
defined. This absolute segment will be allocated to the
short direct addressing area which starts from address
"FE20H" (when the target device is uPD78112}.

(2) Within an absolute segment which belongs to a data
segment, no instruction can be described.

(3) This directive declares the start of a code segment.

(4) This absolute segment will be allocated to-an area
which starts from address "1000H".

3-22

Example 2 NAME SAMP2
ORG OH Q)
CSEG 2
ORG 800H 1@
ORG 1000H s ()
END

(1) This absolute segment belongs to a code segment and will
be allocated to an area which starts from address "OH".

(2) This directive indicates the start of a code segment.

(3) This absolute segment will be allocated to an area which
starts from address "800H".

(4) This absolute segment will be allocated to an area which
starts from address "1000H".

Three absolute segments are defined in (1), (3), and (4)
above, without segment name. Therefore, the assembler will
automatically give names ASEG1, ASEG2, and ASEG3 to the
segments defined in (1), (3), and (4), respectively.

ENDS end of segment

(5) ENDS (end of segment)

Description Format

Symbol Mnemonic Operand Comment
field field field field
None ENDS None { :comment])
Function

The ENDS directive indicates the end of the relocatable-‘
segment defined by the CSEG, DSEG, or BSEG directive.

Use
The ENDS directive is used in pairs with the CSEG, DSEG, or

BSEG directive.

Explanation

o The ENDS directive indicates the end of each éegment in
source module description. _ '

o After the ENDS directive has been describéd, only comments
can be described before the next segment definition
directive (CSEG, DSEG, BSEG, or ORG) is described.

o Description of the ENDS directive may be omitted.

Application Example

(1)
(2}

(3)
(4)

(5)
(6)

This
This
Only
This
Only

NAME SAMP1
BSEG

ENDS. bR
ydats segment

DSEG v

ENDS 2 (3
WORK: DS 1 + (4} This description is
erronecus.
CSEG ' (5
ENDS ;{8
END

directive indicates the end of a bit segment.
directive indicates the start of a data segment.
comments can be described between (1) and (2).
directive indicates the end of the data segment.

comments can be described between the ENDS

directive and the CSEG directive in (5) below.

This
This

directive indicates the start of a code segment.

directive indicates the end of the code segment.

3.3 Directives for Symbol Definition
Symbol definition directives assign names to numerical data to be.
used for describing a source module. By these names, the meaning
of each data value becomes clear and you may easily understand the
contents of the source module. .

Symbol definition directives inform the assembler of the value of
each name to be used in the source module. _

The definitions of names with stbol definition directives must be
described in the module header.

Two directives are available for symbol definition: EQU and SET.

3-26

EQU

equate EQU

(1)

EQU (equate)

Description Format

Symbol Mnemonic Operand Comment

field field field field

name EQU expression [;comment]
Function

The EQU directive defines a name which has the wvalue and
attributes (symbol attribute and relocation attribute) of

the expression specified in the Operand field.

Define a numerical data to be used in the source module as a
name and describe it in the operand of the directive in '
place of the numerical data.

Numerical data to be frequently used in the source module
should be defined as names. By so doing, if you must change
a data value in the source module, all you need to do is

to change the operand value of the name. (See Application
Example 1.)

Explanation

o When a name or label is to be described in the operand of
the EQU directive, use the name or label which has already
been defined in the source module.

o Because the EQU directive defines data to be used in a
source module, define the name for the data in the module

header of the source module.

o If an error exists in the statement in which a name has beeéen

defined with the EQU directive, the name will not be stored
in memory. An error will also occur in the statement in

which the name is referenced.

3-27

again within the same source module.

o Any of the bit values shown in Table 3-6 can be used as
the operand of the EQU directive, A name which has defined
any of the bit values can be referenced only within the same
module. However, a name which has defined "saddr.bit" can be

used as an external definition symbol.

Table 3-6. Representation Formats of Operands

Indicating Bit Vvalues

Representation

format of operand

Range in which name can

be referenced

saddr.bit A name which has defined this bit
value can be referenced from
another module.

sfr.bit A name which has defined any of

A.bit these bit values can be referenced

X.bit only within the same module.

PSW.bit

o A name which has defined a bit value with the EQU directive
has a bit address as its value. See Table 3-7 for the bit

address map.

. Application Examples

Example 1

NAME SAMP |

_DATA1 EQU 10H i(n
DATAZ EQU 20H

ADRST EQU OFE20H (2}
ADRS2 EQU OFE2IH

CSEG

MOY A, 8DATAI HcH
ADD A, ADRS1 (4
‘MOV ADRS2, #DATAY i (5
END

(1) Name "DATA1" has value "10H", symbol attribute "NUMBER",
and relocation attribute "ABSOLUTE".

(2) Name "ADRS1" has value "OFE20H", symbol attribute
"NUMBER", and relocation attribute "ABSOLUTE".

(3) Name "DATA1" defined in (1) above is described as the
operand of the MOV instruction with a value of 10H.

(4) Name "ADRS1" defined in (2) above is described as the
‘operand of the ADD instruction with a value of QFE20H,

(5) Names "ADRS2" and "DATA1" which have already been defined
are described as the operands of the MOV instruction.

If the value "10H" defined as "DATA1" must be changed to 50H,
you only need to change 10H to 50H in the directive
description (1). Descriptions (3) and (5) need not to be

changed.
3-29

Example 2

(1)

(2)

(3)

(4)

NAWME SAMP2
WORK! ‘EQU OFE4OH T3P
WORKIO EQU WORKI.O 12)
WORKI1 EQU WORKI. T $42)
P12 EQU PlL2 H(3)
P13 EQU PL3 $43)
A4 EQU A4 P 04)
%5 EQU X5 $(8)
PSWS EQU PSW.5 46
PSW6 EQU PSW.6 1N
CSEG
MOV1 CY,WORKIO $(8)
MOVY P12,CY $(9)
ORIt . CY,Ad $€10)
XOR1 CY.X5 s
SETI PSWS P12y
CLR1 PSWB 1(13)
END

Name "WORK1" has value "02FE40H", symbol attribute
"NUMBER", and relocation attribute "ABSOLUTE".

Bit values "WORK1.0" and "WORK1.1" which are in the
operand format "saddr.bit" are assigned names "WORK10"
and "WORK11", respectively. Value "OFE40H" has already
been defined in (1) for "WORK1" described as the operand
of the EQU directive.

Bit values "P1.2" and "P1.3" which are in the operand
format "sfr.bit" are assigned names "P12" and "P13",
respectively.

Bit value "A.4" which is in the operand format "A.bit" is

assigned name "A4".

3-30

(5)

(6)

(7)

(8)
(9)
(10)
{(11)
(12)
(13)

assigned name "X5".

Bit value

"pgw.5" which is

in the operand format

"pgW.bit" is assigned name "PSW5".

Bit value "PSW.6" which is in the operand format
"pgW.bit" is assigned name "PSW6".

This description corresponds to "MOV1 CY, saddr.bit".
This description corresponds to "MOV1 sfr.bit, cy".
This description corresponds to "OR' CY, A.bit".

This description corresponds to "XOR1 CY, X.bit".
This description corresponds to "SET1 PSW.bit".

This description corresponds to "CLR1 PSW.bit".

Names which have defined "sfr.bit", "A.bit", "X.bit", and

n"pew.bit" as in (3) through (7), can be referenced only within

the same module.

A name which has defined "saddr.bit" can also be referenced

as an external definition symbol from another module. (See

3.5 (2),

"EXTBIT directive".)

As a result of assembling the source module in Example 2,

the following assembly list is generated. See the object

codes output on this list.

the instruction codes.)

3-31

(Also see APPENDIX C-2 for

ASSEMBLE LIST

STNO ADRS R OBJECT M | SOURCE STATEMENT

' NAME SAMP2
2 FE40 ‘WORK) EQU OFE40H N
3 0200 WORKI0 EQU WORK1, 0 12
4 0201 WORKI1 EOU WORK1, 1 1t
5 0BDA P12 EQuU P12 ¥
(3 0808 P13 £EOU P1.2 1 (3)
7 000C Ad "tou A T
0005 X5 EQU X5 1(5)
g OFF5 PSWS EQU PSW. 5 1(6)
10 - DFFB PSWE EQU PSW. 6 Hn
1 CSEG
12 10000 0QBD0AD : MOV CY, WORK10 1 (8)
13 0003 0B1AD1 MOY1 P12, CY 109)
14 0006 034C OR} CY, Ad Al
15 0008 -0365 XORY CY, X5 111
16 000A 0285 SETI PSWS 012y
1T 000C 0296 CLR) PSW6 1¢13)
18 END

On lines (2) through (7) of the assembly list, bit address
values for the bit values defined as names are indicated in
the OBJECT (code) column. Each bit address becomes a value
as shown in Table 3-7. A bit address is a value to be given
for the convenience of assembly processing and the value
itself has no meaning.

Table 3-7. Bit Address Map

OFEO0OH |0H 1H 2zH 3H 4H 5H 6H 7H|B8H SH AH BH CH DH EH FH |o0FE0IN
1 L " A L A i 1 i 1 i 1 1
|
}
{
o Unused 2L Unused L
T
I
|
|
]
0FE20H | 100H 107H | 108H 10FH
L L 1 1 1 L A l 1 1 1 1, L
|
i
f aaddr.bit
g : +F e
* I »
|
|
|
OFF00H | 8oon BO7TH | 808H B0FH
I 1 1 1 1 1 L L L Il] i 1 L
|
]
[.
|
E—-1 . ﬂ’z . =
|
- I »
f
oFFzoH | 900H s07H, | 908y . 90FH
1 1 i 1 1 1 [l [l] 1 1 i 1 A
I #fr.bit
|
- |
i |
= A o=
1
|
|
i
!
OFFFEH | FFOH FF7H | FF8H FFFH
. L 1 - 1 L 1 L 1 1 L 1 Jd i il 1

b0 bl b2 b3 b4 b5 b6 b7 bBO bl B2 B3I b4 b5 bE b7
LSB MSB LSB ‘ M8B

NOTE: MSB ... Most significant bit
LSB ... Least significant bit

3-33

SET

set SET

(2) SET (set)

Description Format

Symbol Mnemonic Operand Comment
field field field field
name SET expression [;comment]
Function

o The SET directive defines a name which has the value and

attributes (symbol attribute and relocation attribute)} of

the expression specified in the Operand field.

o The value
directive
o The value
directive

and
can
and
are

attribute of a name defined with the SET
be re-defined within the same module.
attribute of a name defined with the SET

valid until the same name is re-defined.

Define a numerical data (variable) to be used in the source

module as a name and describe it in the operand of the

directive in place of the numerical data {variable).

If you wish to change the value of a name in the source

module, a different value can be set in the same name with
the SET directive.

Explanation

o When a name is to be described in the operand of the SET

directive, use the name which has already been defined in

the source module.

o The following items cannot be described as the operand
of the SET directive:
External reference term

Label

Name which has BIT attribute and BIT value

3-34

be referenced only within the same source medule.

o If an error exists in the statement in which a name has been
defined with the SET directive, the name will not be stored
in memory. An error will also occur in the statement in

which the name is referenced.

Application Example

NAME SAMP1
COUNT SET 10H)]
CSEG

MOV B,#COUNT (2

LOOP:
DEC B
BNZ LOOP

COUNT SET 20H V3

MOV B,#COUNT (&

END

(1) Name "“COUNT" has value "10H", symbol attribute "NUMBER",
and relocation attribute "ABSOLUTE". The value and
attributes are valid until re-definition in (3},

(2) The value "10H" of name "COUNT" will be transferred to
register B.

(3) The value of name "COUNT" is changed to 20H.

(4) The value "20H" of name "COUNT" will be transferred to

register B.

3.4 Directives for Memory Initialization and Area Reservation
Memory initializing directives define constant data to be used
in a source program. The value of the defined constant data is
generated as an object code.

Area reservation directives reserve memory areas to be used by
the source program,

‘DB define byte DB
(1) DB (define byte)
Description Format
Symbol Mnemonic Operand Comment
field field field field
[label:] DB ((size)]l[initial value[,...]] [;comment)
Function

The DB directive initializes a memory area in byte units with

the initial value(s) specified in the Operand field.

The number of bytes to be initialized can be specified as

"size".

Use

The DB directive is used when defining a constant (numeric

constant or character constant).

Explanation

o The following three parameters
values:

C) Constant

Numeric constant: Must be a

more than

the range

Character constant: Must be

code).

@ Name

can be specified as initial

constant consisting of not

8 bits. (Its value must be in
of 0 to 255.)

one character (7-bit ASCII

The value of a name that can be described as the operand

must be 8 bits or less. Its

symbol attribute is "NUMBER"

and its relocatioen attribute, "ABSOLUTE".

() Expression

The value of an expression that can be described as the

‘operand must be an absolute
than 8 bits.
3-37

term consisting of not more

o If both "size" and "initial value" are specified, the

assembler checks if the specified size is equal to the

specified initial value in the number of bytes.

o If a size is specified but no initial value is specified,

an area equivalent to the number of bytes specified by

the size is initialized with value "oOH",

o The DB directive cannot be described within a bit segment,

Application Example

(1)

(2)

(3}

(4)

(5)

NAME SAMP1

CSEG
WORK1 DB (1) ;)
WORK2 DB (2) , (1)

. CSEG
MASSAG:DB 'ABCDEF' }m
DATA! DB CAH,O0BH.OCH’ i (3)
DATAZ :DB (3)100,101,102 (%
DATA3 .DB (2)0AH is) This description is.
erroneous. .
END

By specifying (size) only, each byte area is initialized
with value "O0OH".

This directive initializes a 6-byte area with character
constant "ABCDEF".

This directive initializes a 3-byte area with numeric
constants QOAH,'OBH, OCH".

This directive initializes a 3-byte area with numeric
constants "100, 101, 102", | ,

The assembler checks if the specified size agrees with
the initial values in the number of bytes.

Because the specified size does not agree with the
initial value in the number of bytes, this description
will result in an error.

3-38

DW define word DW

(2) DW (define word}

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] DW [{size)][initial valuel,...]] [;comment]
Function

The DW directive initializes a memory area in word units
(i.e., in units of 2 bytes) with the initial value(s)
specified in the Operand field.

The number of words to be initialized can be specified as
"size".

[
U
®

The DW directive is used when defining a 16-bit numeric

constant such as an address or data.

Explanation

o The following three parameters can be specified as initial
values: '
C) Numeric constant
Must be a constant consisting of not more than 16 bits.
(@ Name or label
Must be a name or label with a value of not more than 16
bits.
A name with BIT attribute cannot be described as the
operand of this directive.
C) Expression
Must be an expression with a value of not more than 16
bits.

o If both "size" and "initial value" are specified, the
assembler checks if the specified size is equal to the
specified initial value in the number of words.

3-39

an area equivalent to the number of words specified by
the size is initialized with value "0O0H".
o The DW directive cannot be described within a bit segment.

Application Example

NAME SAMPLE
CSEG
WORK1: DW -(10) {1}
WORK2: DW (128) 1(1)
CSEG
ORG OH
Dw MAIN 1 (2)
DW SUB1 :@
CSEG
MAIN
‘CSEG
SUB1
DATA @ DW (2)1234H,5678H ;(3)
- END

{1) By specifying (size) only, each word area is initialized
with value "00H".

(2) Vector entry addresses are defined with the DW directive.

(3) This directive initializes a 2-word area with value
"34127856".

NOTE 3-2

With a word value, the HIGH (high-order) address of memory

is initialized with the high-order 2 digits of the value

and the LOW (low-order) address of memory is initialized with
the low-order 2 digits of the value.

Source module Memory
Example: | nyyME SAMPLE
‘CSEG
ORG 1000H |, .
DW 1234H 12 digits 3 4 100 0H (LOW address)
I
High-order 1 2 100 1H (HIGH address)
END 2 digits T
|

3-41

DS define storage

{3) DS {(define storage)

Description Format

Symbol Mnemonic Operand Comment
field field field field
{label:] DS expression [scomment] .
Function

The DS directive reserves a memory area for the number 6f
bytes specified in the Operand field.

c
n
{4

The DS directive is mainly used to reserve a memory (RAM)
area to be used by a source program. If a label is specified,
the value of the first address of the reserved memory

area is assigned to the label. In the source module, this

label is used for description to manipulate the memory.

Explanation

o The contents of an area reserved with this directive are
unknown.

© When describing a name or label as the operand of this
directive, the name or label must be an absolute term which
has already been defined in the source module.

o If a label is gpecified in the Symbol field, the label will
have the first address of the reserved area as its value.

o If a value of 0 is given to the operand of this directive,
no memory area will be reserved.

o The DS directive cannot be described within a bit segment.

Application Example

(1)

(2)
(3)

' NAME SAMPLE

DSEC

TABLE1 DS 10 ()]
WORK1 :DS 1 i (@
WORK2 :DS 2 1 @)

CSEG
MOVW HL,=TABLE!

MOV A.WORK1!

MOVW BC,#WORK?2

END

This directive reserves a 10-byte work area, but the
contents of the area are unknown. Label "TABLE1" is
assigned to the first address of the area.
This directive reserves a 1-byte work area.

This directive reserves a 2-byte work area.

AvY ¥ -
DBIT define bit DBIT

(4) DBIT (define bit)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[name] DBIT None [;comment]
Function

The DBIT directive reserves a 1-bit memory area within a
bit segment.

Use
The DBIT directive is used to reserve a bit area within a

bit segment.

Explanation

o The DBIT directive is described only in a bit segment.

o The contents of a 1-bit area reserved with this directive
are unknown.

o If a name is specified in the Symbol field, the name will
have a bit address as its value. See Table 3-7 for the
bit address map.

3-44

 Application Example

(1)

(2)

(3)

NAME SAMPLE

BSEG
B1T1 DBIT i
BIT2 DBIT 4]
BIT3 'DBIT)
CSEG

MOV1 CY.BIT! (2
OR1 CY,BiT2 @

END

These three DBIT directives reserve a 1-bit area and
define names (BIT1, BIT2, and BIT3) each having a bit
address.

This instruction corresponds to "MOV1 CY,saddr.bit"
and describes name "BIT1" of the bit area reserved in
(1) above as operand "saddr.bit".

This instruction corresponds to "OR1 CY,saddr.bit" and

describes name BIT2 as "saddr.bit".

3-45

3.5 Directives for Linkage

Linkage directives function to make clear the relation between
the external definition of a symbol and its external reference.
Let's consider a case where a program is created by being divided
into two modules: Module 1 and Module 2. In Module 1, if you wish
to reference a symbol defined in Module 2, thélsymbol cannct be
use without declaration in each module. For this reason, some
sort of signal or indication as "I want to use the symbol" and
"You may use the symbol" is required between the two modules.

In Module 1, the external reference declaration of a symbol must

be made to indicate that a symbol defined in another module must
be referenced. On the other hand, in Module 2, the external

definition declaration of a symbol must be made to indicate that

the symbol may be referenced in another module.
The symbol can be referenced for the first time when the two
external reference and external definition declarations are
effectively made.
Linkage directives function to establish this interrelationship
and are available in the following types:

o To declare external reference of symbol: EXTRN and EXTBIT

directives
o To declare external definition of symbol: PUBLIC directive

Fig. 3-6. Relationship of Symbols between Two Modules

<Module 1> ¢Module 2>
NAME MODUL1 NAME MODUL2
EXTRN MDL2;(1) E— PUBLIC MDL2 :{3)
CSEG (CSEG
MDL2:
BR IMDL2 ; (2)
END END

3-46

. In Module 1 in
is referenced in (2). Therefore, the symbol is declared as an

external reference with the EXTRN directive in {1).

In Module 2, the symbol "MDL2" to be referenced from Module 1 is
declared as an external definition in (3}. '
The linker checks whether or not this external reference of the

symbol corresponds to the external definition of the symbol.

3-47

(o &4 S
EXTRN external : + EXTRN

(1) EXTRN (external)

Description Format

Symbol ' Mnemonic -Operand Comment
field field field field
[label:] EXTRN symbol namel,...) [; comment]
Function

The EXTRN directive declares that the symbol described in the
Operand field is to be referenced in this module.
The specified symbol has been defined in another module.

Use
When referencing a symbol defined in another module, the
EXTRN directive must be used to declare the symbol as an

external reference.

Explanation
o The EXTRN directive must be described in the module header

of a source module. (See Section 2,1, "Basic Configuration
of Source Program".)

o Two or more symbols may be specified in the Operand field by
delimiting each symbol name with a comma (,}.

0 When referencing a symbol having a bit value, the symbol
must be declared as an external reference with the EXTBIT
directive.

o No macro name can be described as the operand of the EXTRN

directive. (See Chapter 5, Macro for the macro name.)

3-48

Application Example

<Module 1?2 <Module 2>
' NAME SAMP1 NAME SAMP2
EXTRN SADRI1, SADR2 ; (1) PUBLIC SADR1.SADR2 : ()
CSEG DSEG
ORG 0FE20H
MOV A, SADRI1 2 SADR1:!DS 1 P (5)
: | SADR2:DS 2 : (8)
MOVW DE,#SADR2 : 3)
MOVW AX, (DE)
END END

(1)

(2)
(3}
(4)

(5)
(6)

This directive declares symbols "SADR1" and
referenced in (2) and (3), respectively, as

references.

Two or more symbols may be described in the

This instruction references symbol "SADR1".

This instruction references symbol '"SADR2".

This directive declares symbols "SADR1" and

external definitions.

This directive defines symbol "SADR1".
This directive defines symbol ''SADR2".

3-49

"sADRz" to be
external

Operand field.

"SADR2" as

EXTBIT external bit

(2) EXTBIT (external bit)

Description Format

Symbol Mnemonic Operand Comment

field field field . field

[label:] EXTBIT symbol name[,...] [s comment }
Function

The EXTBIT directive declares that the symbol having a bit
value, described in the Operand field is to be referenced in
this module. The specified symbol has been defined in another
module.

c
n
o

|

When referencing a symbol having a bit value (saddr.bit)
defined in another module, the EXTBIT directive must be used

to declare the symbol as an external reference,

Explanation

o The EXTBIT directive must be described in the module header
of a source module.

o0 Two or more symbols may be specified in the Operand field by
delimiting each symbol name with a comma (,).

© Only the bit value of a symbol which can be represented in
the operand format "saddr.bit" can be described as the
operand of the EXTBIT directive.

Representation

Format of operand

Description as operand of
EXTBIT directive

saddr.bit Allowed
sfr.bit.

A.bit Not allowed
X.bit

PSW.bit

Application Example

<Module 1>

<Module 2>

NAME SAMPI

NAME SAMP2

EXTBIT FLAG!Ll., FLAG2 (1) PUBLIC FLAGI1, FLAG? ;(4)

CSEG FLAG! EQU OFE20H. 0 i (5)
FLAG2 EQU OFE20H.1 i (6)

MOV] CY.FLAG1 (2} CSEG

OR1 CY,FLAG2:(3)

END END

{1) This directive declares symbols "FLAG1" and "FLAG2" to be
referenced in (2) and (3), respectively, as external

references.

Two or more symbols may be described in the Operand field.

(2) This instruction references symbol "FLAG1"., This

description corresponds to "MOV1 CY,saddr.bit".

(3) This instruction references symbol "FLAG2". This

description corresponds to "OR1 CY,saddr.bit".
{4) This directive declares symbols "FLAG1" and "FLAG2" as

external definitions.
(5) This directive defines symbol "FLAG1".
(6) This directive defines symbol "FLAG2".

3-51

=OUL

publig . ‘] 7PUBLIC

PUBLIC

(3) PUBLIC (public)

Description Format

Symbol Mnemonic Operand Comment
field field field field
{label:] PUBLIC symbol name{,...] [;comment]

Function

The PUBLIC directive declares that the symbol described in the

Operand field is a symbol to be referenced from another
module.

Use

When defining a symbol to be referenced from another module,

the PUBLIC directive must be used to declare the symbol as an
external definition. '

Explanation

© The PUBLIC directive must be described in the module header
of a source module.

o Two or more symbols may be specified in the Operand field by
delimiting each symbol name with a comma (,).
o Symbol(s) to be described in the Operand field must have
been defined within the same source module.
. o The following symbols cannot be used as the operand of the
PUBLIC directive:

Name defined with the SET directive

Symbol defined with the EXTRN directive within the same
module

Name with a bit value other than "saddr.bit"

Segment name

Module name

Macro name

3-52

~ NOTE 3-3
External declaration of segment name or module name:

Even if a segment name or module name is declared with the
PUBLIC or EXTRN directive, no error will occur. However,
this declaration becomes invalid and if these symbols are
referenced, an error will result at linkage time.

Application Example
Example of program consisting of three modules

<Module 1» " ¢Module 2>
NAME SAMPI NAME SAMP?2
PUBLIC Al,A2 1) PUBLIC B1 H v
EXTRN B1.Cl EXTEN Al
CSEG
Al EQU 10H B1:
A2 EQU OFE20H.1 MOV C,éA1
CSEG END
BR IB1 <Module 3>
" NAME SAMP3
- XOR1 CcY.Cl1 PUBLIC C1 1 (3)
EXTRN A2
END Ct EQU OFE21H.0
CSEG
MOV1 CY. A2
END

(1) This directive declares that symbols "aA1" and "A2" are
to be referenced from other modules.
(2) This directive declares that symbol "Bi1" is to be
referenced from another module.
(3) This directive declares that symbol "c1" is to be
referenced from another module.
3-53

(o =42t —
NAME name . - NAME

(4) NAME (name)

Description Format

Symbol Mnemonic Operand Comment ;
field field field field

[label:] NAME module name(,...] [;comment]
Function

The NAME directive gives (assigns} the module-namémdescribed
in the Operand field to an object module to be output by
the assembler. '

Use
A module name is required for symbolic debuggihg of an object

module with a debugger.

Explanation

0 The NAME directive must be described in the module ﬁeader
of a source module. (See Section 2.1, "Basic Configuration
of Source program" in Chapter 2.)

o For the conventions of module name description, see .
Subsection 2.2.3, "Symbol field" in Chapter 2,

o No module name can be described as the operand of any
directive other than NAME or of any instruction.

o The NAME directive must be described for each source module.

If this directive is omitted, an error will result.

3-54

Application Example

(1) This

NAME SAMPLE (1)
DSEG

CSEG

END

directive declares

module name "SAMPLE",

3.6 Directive for Automatic Selection of BR Instruction .
As the unconditional branch instructions of the uCOM-78K/I, which
directly describe a branch destination address as their operand,
two instructions "BR !addr16(addr13)" and "BR $addri1é(addri13)" are
available, | '

The BR !addr16{addr13) instruction is a three-byte instruction
which allows branching to any address, whereas the BR $addri16
(addr13) instruction is a two-byte instruction which allows
branching to an address within the range of -126 to +129 bytes
from the current location counter value.

Therefore, to create a program with high memory utilization
efficiency, the 2-byte instruction "BR $addri6(addri3)" must be
described according to the address range of the branch destina-
tion. However, it is quite troublesome to take this address range
into account when you describe the branch instruction.

For this reason, there was a need for a directive which directs
the assembler to automatically select the two-byte or three-byte
branch instruction according to the address range of the branch
destination. The BR directive is provided for this purpose.
However, note that this directive is valid only when the assembler
option "OPTIMIZE" is specified. (For the OPTIMIZE option, see
Subsection 4.4.4, "Description of each assembler option" in
Chapter 4 of the RA78K/I Assembler Package User's Manual for
Operation.)

3-56

. BR branch

(1) BR (branch)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:] BR expression [;comment)
Function

The BR directive causes the assembler to automatically select
the 2-byte or 3-byte branch instruction according to the
value range of the expression specified in the Operand field
and to generate the object code applicable to the selected
instruction. This function is referred to as "optimization of
branch instructions".

The Optimize function is valid only when the assembler option
"OPTIMIZE" is specified.

o If the branch destination is within the range of -126 to
+129 bytes from the current location counter, you can
describe the 2-byte branch instruction "BR $addri6{addr13)".
With this instruction, required memory space can be reduced
by one byte as compared with that when using the 3-byte
branch instruction. To create a program with high memory
utilization efficiency, the 2-byte branch instruction should
be used positively. However, each time you describe a branch
instruction, it is troublesome for you to take into account
the address range of the branch destination. So, use the
BR directive when you are not sure of whether or not the

the 2-byte branch instruction can be described.

o If it is definite that you can describe the 2-byte o
3-byte branch instruction, describe the applicable branch
instruction. In this case, the assembly time can be
shortened as compared with that when the BR directive is

described.

Explanation _ .
o If the assembler option "OPTIMIZE" is specified, the

assembler performs the feollowing processes for the BR

directive. In the following explanation, the term

"expression'" refers to the expression described in the

Operand field.

(a) When BR directive is described within a relocatable. .
segment

- If the expression. is a label within the same segment,
the optimization phase is executed.

- If the expression is a label within another segment
or an externally referenced term, the object code
of the 3-byte branch'instruction is generated.

~ If the relocation attribute of the expression is an
absolute term, the object code of the 3-byte branch
instruction is generated,

(b) When BR directive is described within an absolute
segment

- If the relocation attribute of the expression is an
absolute term, the optimize phase is executed.

- If the relocation attribute of the expression is a
relocatable term or externally referenced term,
the object code of the 3-byte branch instruction is

generated.

.Table 3-9. Optimizaticon Conditions of BR Directive

Jump condition Absolute Relocatable
(source) segment segment

Jump Reference |Backward Forward Backward Forward

condition

(destination)

Numeric value Optimize Optimize 3-byte BR i 3-byte BR

Name (symbol Optimize Optimize 3-byte BR | 3-byte BR

attribute: NUMBER)

Label | Same segment |Optimize {Optimize |Optimize | Optimize
Same named Optimize Optimize Optimize Optimize
segment
Other segment |[Optimize Optimize - -
(same type)

Other segment | 3-byte BR |3-byte BR |3-byte BR | 3-byte BR
(Other type) ‘

External reference 3-byte BR - |1 3~-byte BR -

name ' '

Location counter ($) |Optimize - Optimize

NOTE: o "-" in the

prchibited.

table indicates that the combination is

o "Backward" reference denotes the reference of a

symbol which has already been defined in the source

module,

o "Forward"

reference denotes the reference of a

symbol which is to be defined in a subseguent line.

o If the assembler option "OPTIMIZE" is omitted, the assembler

generates the object code of the 3-byte branch instruction

for all BR directives in the source module.

o "$" indicating the current location counter cannot bhe

specified as the operand of the BR directive.

Application Example

(1)

(2)

(3)

(4)

NAME SAMPLE
CSEG S —
L1: MQV A, #10H Relocatable
: segment
BR L1 Y
BR Lz ;@
- ORG 1000H —
La: |
BR L2 A I Absolute
segment -
BR L1)"
END

This BR directive will be optimized.

If displacement between the line (1) and the "L1:" label
definition is within -126 bytes, the object code of the
2-byte branch instruction will be generated. . -
This BR directive will be substituted with the 3-byte'
branch instruction, because it branches to a label

in another segment.

This BR directive will be optimized.

If displacement between the line (3) and the "L2:" label
definition is within -126 bytes, the object code of the
2-byte branch instruction will generated.

Because the relocation attribute of "L1" described as
the operand of this BR directive is a relocatable

term, the object code -of the 3-byte branch instruction
will be generated.

3-60

- 3.7 Macro Directives

When you describe a source program, it is troublesome for you
to describe a series of frequently used instruction groups over
and over again, and this may cause an increase in the number of
description or coding errors.

By using the macro function with macro directives, the need to
repeatedly describe the same group of instructions can be
eliminated, thereby increasing coding efficiency of the program.
The basic function of a macro is the substitution of a éeries of
statements with a name. For details of the macro function, see
Chapter 5, Macros.

Macro directives include MACRO, LOCAL, REPT, IRP, EXITM, and
ENDM.

In this section, each of these directives is detailed.

3-61

MACRO macro

(1) MACRO (macro)

Description Format

Symbol Mnemonic . Operand G Comment
field field field . - field
macro name MACRO {formal parameter(,...]1] - [;comment]

ENDM
Function

The MACRO directive executes a macrodefinition by assigning

the macro name specified in the Symbol field to a series of

statements (called a macro body) described between this
directive and the ENDM directive.

=]
0
©

|

Define a series of frequently used statements in the source

program with a macro name., After the macrodefinition, you only

need to describe the defined macro name (for macro reference)

and the macro body corresponding to the macro name will be

expanded.

Explanation

o

For the macro name to be described in the Symbol field,
see the conventions of symbol description in Subsection
2.2.3, "Symbol field" in Chapter 2.
To reference a macro, describe the defined macro name in
the Mnemonic field. (See Application Example.)}
For the formal parameter(s) to be described in the Operand
field, the same rules as the conventions of symbol
description will apply.
Description of formal parameter(s) within a macro body is
limited to the part of the Operand field where constant(s)
are to be described.
Formal parameters are valid only within a macro body.

3-62

o Because formal parameters are handled as symbols, the same

named parameters cannct be described within the same

source module.

o A name or label defined within a macro body must be

declared as a local symbol with the LOCAL directive,

o Nesting of macros (i.e., to refer to other macros within

a macro body) is allowed up to eight levels.

o Up to 10 macros can be defined within a single source

module.

Application Example

NAME

ADMAC MACRO

S5AMP

PARA1, PARAZ

i

MoV A, %PARAI

ADD A,=PARAZ

ENDM @
END

Macro body

(1) A macro is defined with macro name "ADMAC" and two formal
parameters "PARA1" and "PARA2" specified.

(2) This directive indicates the end of the macrodefinition.

LOCAL - : local - . LOCAL

(2) LOCAL {local)

Description Format

Symbol Mnemonic Operand - Comment

field field field .- field

{label:] LOCAL symbol name[,...] [;comment] -
Function

The LOCAL directive declares that the symbol name specified in
the Operand field is a local symbol which is valid only within
the macro body. '

Use
Use the LOCAL directive if you wish to reference a macro

defining symbol(s) within its body more than once.

Explanation

o If a symbol is defined within a macro body and the macro is
referenced more than once, it means that the symbol would be
defined more than once in the source module. For this
reason, it is necessary to declare that the symbol is a
local symbol which is valid only within the macro.

0 The LOCAL directive can be used only within a macro-
definition.

o The LOCAL directive must be described before the symbol
specified in the Symbol field is defined. (In other words,
the directive must be described at the beginning of the
macro body.)

o Symbol names to be defined with the LOCAL directive within
a single source module must be all different. (In other
words, the same name cannot be used for local symbols to
be used in each source module.)

0 Up to 15 symbol names can be specified in the Operand field.

3-64

o Symbols defined with the LOCAL directive cannot be called

a-out/DisC

(referenced) from outside the macro.

Application Example

<Source program’

Macrodefinition

(1)

(2)

{3)

(4)

(5)

NAME SAMPLE
MACI MACRO
LOCAL LLAB ')
LLAB:
BR $LLAB (2
ENDM
REFi: MaC! 13)
BR ILLAB i)

REF2: MACI

END

; {5).

-—-~This description is
erroneous .

This directive defines symbol name "LLAB" as a local

symbol.

This instruction references local symbol "LLAB" within

macro MAC!.

This directive references macro MACT.
Because local symbol "LLAB" is referenced outside the

definition of macro MACt, this description causes an

error.

This directive references macro MACT.

3-65

If the source program in the above examplé is assembled,
macroexpansion (replacement of a macrocall with the body

itself) occurs as shown below.

¢<hssembly list:>

NAME SAMPLE

MAC1 MACRO

LOCAL LLAB
LLAB:

BR SLLAB

ENDM
REF1: MaC1

LOCAL LLAB
LLAB:

ER SLLAB

BR ILLAB
REF2: MACI

LOCAL LLAB
LLAB:

BR $LLAB

END

3-66

Macreodefinition

Macroexpansion

This description is
errcneocus.

Macroexpansion

AvY ¥ —
-REPT repeat REPT

(3) REPT (repeat)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:] REPT expression [scomment]
ENDM
Function

The REPT directive causes the assembler to repeatedly expand
a series of statements described between this directive and
the ENDM directive {called the REPT-ENDM block) the number of
times equivalent to the value of the expression specified in
the Operand field.

a
w0
o

|

If a series of statements is to be described repeatedly in

a source program, use the REPT and ENDM directives.

Explanation

o If a name or label is to be described as the operand of the
REPT directive, the name or label must be an absolute term
which has already been defined in the source module.

o In the REPT-ENDM block, none of the MACRO, REPT, IRP, and
ENDM directives can be described. In other words, nesting
of macros is not allowed within the REPT-ENDM block.

o If the EXITM directive is described in the REPT-ENDM block,
subsequent expansion of the REPT-ENDM block by the assembler
will be terminated. (See (5}, EXITM directive.)

3-67

Application Examples

<Spource program?>

Example 1 NAME SAMP1

CSEG

REPT (1)
INC REPT-ENDM block .

w| w

DEC C
ENDM 2)

END

(1) This directive instructs the assembler to expand
the REPT-ENDM block three consecutive times.
(2) This directive indicates the end of the REPT-ENDM block.

When the above source program is assembled, the REPT-ENDM
block is expanded as shown in the following assembly list:

<Assembly list»
NAME SAMP1

CSEG .

INC
DEC
INC

DEC
INC

DEC

O & O @ O m

END

You can see that the REPT-ENDM block defined by statements (1)
and (2) has been expanded three times. On the assembly list,
the definition statements (1) and (2) by the REPT directive
in the source module will not be displayed.

<Source program’
Example 2 NAME SAME2

CSEG

REPT
INC
REPT
DEC
ENDM
ENDM

1)

@ +«— This description is
erroneous.

O wWw|lmm w

END

(1) This directive instructs the assembler to expand the
REPT-ENDM block three consecutive times.

(2) This directive instructs the expansion of the REPT-ENDM
block again within the REPT-ENDM block. This description is
incorrect, because nesting of macros is not allowed
within the REPT-ENDM block.

3-69

IRP

indefinite repeat IRP

(4) IRP (indefinite repeat)

Description Format

Symbol Mnemonic Operand Comment
field field - field field
[label:] iRP _ formal parameter, <actual [;comment]
S parameter[,... 1>
ENDM
Function

The IRP directive causes the assembler to repeatedly expand
a series of statements described between this directive and
the ENDM directive (called the IRP-ENDM block) the number of
times equivalent to the number of actual parameters while
replacing the formal parameter with the actual parameters
specified in the Operand field (in sequence from left to
right}).

If a series of statements, only part of which becomes
variables is to be described repeatedly in a source program,
use the IRP and ENDM directives.

Explanation

o Up to 13 actual parameters may be described in the Operand

field.

A numeric value, name, or label can be described as an
actual parameter. However, no expression can be described.
In the IRP-ENDM block, none of the MACRO, REPT, IRP, and
ENDM directives can be described. In other words, nesting
of macros is not allowed within the IRP-ENDM block.

If the EXITM directive is described within the IRP-ENDM

block, the expansion of the IRP-ENDM block subsequent to
the EXITM directive will be terminated.

3-70

NOTE 3-4
If a symbol which has the same name as the formal parameter

of the IRP directive is described as a name or label within

the same IRP-ENDM block, no error will occur. However, its
object code will become invalid. Therefore, take care not

to define any symbol having the same name as the formal

parameter.

Application Example

<Source program?

NAME SAMP1

CSEG

IRP PARA, <OAH. 0BH. 0OCH> {1

ADD A'H#PARA . IRP-ENDM block
MOV (DE+). A

ENDM 12

END

(1) The formal parameter is "PARA" and the actual parameters
are the following three: "O0AH", "OBH", and "OCH".
This directive instructs the assembler to expand the
IRP-ENDM block three times (i.e., the number of actual.
parameters) while replacing the formal parameter "PARA"
with the actual parameters "OAH", "O0BH" and "OCH".

{2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM
block is expanded as shown in the following assembly list:

<Assembly list>

NAME SAMP1
CSEG

ADD A, #PARA (8
MOV {DE+), A

ADD A, #PARA O]
MOV {DE+), A

ADD A. #PARA)
MOV (DE+), A

END

You can see that the IRP-ENDM block defined by statements (1)
and (2) has been expanded three times (equivalent to the

number of actual parameters),

On the assembly list in this case, the formal parameters
within the IRP-ENDM block are not replaced with the actual

parameters. However,

parameters are replaced with the actual parameters in

sequence from left to right.

(3) ADD A, #PARA > A80A

(4) ADD A, #PARA — A80B
(5) ADD A, #PARA — AS80C

in object code generation, the formal

(Object code)

- EXIT™ exit from macro EXITM

{5) EXITM (exit from macro)

Description Format

Symbol Mnemonic Operand Comment
field field field field
{label:] EXIT None [; comment]
Function

o The EXITM directive terminates by force the expansion of
the macro body defined by the MACRO directive.

o If the EXITM directive is described in the REPT-ENDM or
IRP-ENDM block, the directive terminates by force the
definition (expansion) of the block. (The REPT or IRP
directive becomes invalid.)

<
n
[

o This function is mainly used when a conditional assembly
function (see Sectidn 4.4, Conditional Assembly Control
Instructions) is used in the macro body defined with the
MACRO directive.

0 If conditional assembly functions are used in combination
within the macro body, part of the source program which

must not be assembled is likely to be assembled unless
control is returned from the macro by force with the EXITM

directive. In such a case, the EXITM directive must be used.

Explanation

If the EXITM directive is described in a macro body,
instructions up to the ENDM directive are stored as the macro
body.

The EXITM directive indicates the end of a macro only during

the macroexpansion.

3-73

Application Example
o In the example here, conditional assembly control

instructions are used. See Section 4.4, Chapter 4 for the
conditional assembly control instructions.
o See Chapter 5, Macros for the macro body and macro-

expansion.

(Source program?

NAME - SAMP1
MAC] MACRO ' (1)
NOT1 Al ‘ Macro body
s 1F(SW1) ;2
BT Al, SL1I] IF block
EXITM ‘ P @
b ELSE . y (4
MOV1 . 9?'** ELSE block
MOV A #0
$ ENDIF + 1)
5 IF(SW2) e |
MOV A.[D] '] IF block
‘S ELSE P (0
MOV A.[E] } ELSE block
$ ENDIF (B
ENDM y)
CSEG
$ SET(SW1) y 00 -
MAC 1 y i) =————— Macro reference
NOP
L1: NOP
END

(1) The macro "MAC1" uses conditional assembly functions (2}
and (4) through (8) within the macro body.

{2} This instruction defines an IF block for conditional
assembly. If switch name "SW1" is true (QFFH), the
IF block will be assembled.

3-74

(3) This directive terminates by force the expansion of the
macro bedy in (4) and thereafter.

If this EXITM directive is omitted, the assembler
proceeds to the assembly process in (6) and thereafter
when the macro is expanded.

(4) This instruction defines an ELSE block for conditional
assembly. If switch name "SW1" is false (00H), the
ELSE block will be assembled.

(5) This instruction indicates the end of the conditional
assembly.

(6) This instruction defines another IF block for conditional
assembly. If switch name "SW2" is true (OFFH), the IF
block following this will be assembled.

(7)) This ihstruction defines another ELSE block for
conditional assembly. If switch name "SW2" is false (00H),
the ELSE block will be assembled.

{8) This instruction indicates the end of the conditional
assembly processes in {6) and (7).

(9) This directive indicates the end of the macro body.

(10) This SET control instruction gives true value (0FFH)} to
switch name "SWi" and sets the condition of the
conditional assembly.

(11) This instruction references macro '"MAC1".

When the source program in the above example is assembled,

macroexpansion occurs as shown below.

3-75

MAC1L

NAME
MACRO

ENDM
CSEG
SET (SW1)
MAC]

SAMP1

y (D

y 9)

; 60
)

IF(8W1)
BT

Al, SL1

Macro-expanded part

L1

NGQP

- NOP

END

By the macro reference in (11), the macro body of macro .
"MAC1" has been expanded. Because true value (OFFH) is set

in switch name "sSW1'" in (10), the first IF block in the macro
body is assembled. Because the-EXITM directive is described

at the end of the IF block, the subsequent macroexpansion

is not executed.

- ENDM end macro ENDM

{(6) ENDM (end macro)

Description Format

Symbol Mnemonic Operand Comment
field field field field
None ENDM None { ;comment]
Function

The ENDM directive instructs the assembler to terminate the
execution of a series of statements defined as the functions

of the macro.

a
4]
(1

|

The ENDM directive must always be described at the end of a
series of statements following the MACRO, REPT, or IRP

directive.

Explanation

o A series of statements described between the MACRO directive
and ENDM directive becomes a macro body.

o A series of statements described between the REPT directive
and ENDM directive becomes an REPT-ENDM block.

o A series of statements described between the IRP directive
and ENDM directive becomes an IRP-ENDM block.

3-77

Application Examples

Example 1

Example 2

Example 3

<MACRO~—ENDM>

NAME SAMPI
ADMAC MACRO PARA1, PARAZ
MOV A, %PARA1
ADD A, 2PARAZ"
ENDM
END
<REPT—ENDM>
NAME SAMP2
CSEG
REPT 3
INC B
DEC C
ENDM
END
<1RP—ENDM>
NAME SAMP3
CSEG
IRP PARA,<1.2.,3>
ADD A, %PARA
MOV (E+),A
ENDM
END

3-78

3.8 Directive for Assembly Termination

The assembly termination directive (END) informs the assembler of
the end of a source module. This assembly termination directive
must always be described at the end of each source module.

The assembler processes a series of statements up to the assembly
termination directive as a source module. Therefore, if the END
directive is described before the ENDM directive in the REPT-ENDM
or IRP-ENDM block, the REPT or IRP block becomes invalid.

3-79

END end

(1) END (end)

Description Format

Symbol Mnemonic Operand Comment
field field field field
None END None [;comment]
Function

The END directive indicates to the assembler the end of a

source module.
Use
The END directive must always be described at the end of each

source module.

Explanation

0 The assembler continues to assemble a source module until
the END directive appears in the source module. Therefore,
the END directive is required at the end of each source
module.

o Always input a carriage return (CR} or line feed code {LF)
code immediately after the END directive.

Application Example

NAME SAMPLE
DEEG

CSEG

END (1)

(1) Always describe the END directive at the end of each
source module. '
3-80

4.1 Overview of Control Instructions

CHAPTER 4. CONTROL INSTRUCTIONS

Control instructions are described in a source program and are

used to provide particular instructions on the assembler

operation. These instructions are not subject to object code

generation.

Control instructions are available in the following three types:

Table 4-1 List of Control Instructions

No. Type of control instruction Control instruction
1 Instruction to control INCLUDE
INCLUDE file
2 Instructions to control EJECT, NOLIST, LIST,
assembly list SUBTITLE
3 Instructions to control SET, RESET
conditional assembly IF, ELSEIF, ELSE, ENDIF

Control instructions are described in a source program just the
same as directives. However, "$" {dollar sign) must be described

in the 1st column of the source statement.

$ [one blank or TAB] Control instruction

f

1st column

Of the control instructions listed in Table 4-1, the following

instructions can also be specified as assembler options in the
start-up command line of the assembler:

o NOLIST, LIST, SUBTITLE
o SET, RESET

For the method of specifying assembler options in the command

line, see Subsection 4.3.1, "starting up the assembler", Chapter

4 in the RA78K/I Assembler Package User's Manual for Operation.
4-1

4.2 INCLUDE control instruqtion

The INCLUDE control instruction is used to include another module
file in a source module.

By making the most of this control instruction, you may save your
time and labor in describing a source program.

This control inst:uction is detailed on the next page.

4-2

‘INCLUDE include INCLUDE

(1)

INCLUDE (include)

Description PFormat

$[o)INCLUDE (filename)
${n]IC (filename) ; Abbreviated format

|

1st column

Function

The INCLUDE control instruction inserts the contents of the
file specified by "filename" into the source program for

assembly.

A relative large group of statements which may be shared by
two or more source modules should be combined into a single
file as an INCLUDE file. If the group of statements must be
used in each source module, specify the filename of the
required INCLUDE file with the INCLUDE control instruction.
With this instruction, your time and effort in describing

the source modules can be greatly reduced.

Explanation

o0 When describing the INCLUDE control instruction, "$" must
be described in the 1st column of the source statement.

If you wish to provide a space between "$" and "INCLUDE",
input only one BLANK or TAB character.

o When specifying a filename, the drive name or directory name

in which the INCLUDE file is stored can be specified.

If neither drive name nor directory name is specifiegd,
the drive or directory in which the source module file is
stored is assumed to have been specified.

o Nesting of INCLUDE files is allowed only for one level.
(The term "nesting” refers to the specification of one or
more other INCLUDE files in an INCLUDE file.)

4-3

Application Example

<Spurce program> <INCLUDE file EQU.INC»
NAME SAMPLE SYMA EQU 10K
EXTRN L1, L2 SYMB EQU -20H
PUBLIC L3

$ INCLUDE(EQU. INC) ;{1) SYMZ- EQU 100H

CSEG

END

(1) This control instruction specifies "EQU.INC" as the
INCLUDE file. When this source program is assembled,
the contents of the INCLUDE file will be expanded as

follows:
NAME SAMPLE
EXTRN L1, L2
PUBLIC L3
$ INCLUDE(EQU. INC) ;)
SYMA EQU 10H
SYMB EQU 20H
SYMZ EQU 100H
CSEGC
END

4-4

The contents of INCLUDE
file "EQU.INC" have
been expanded.

4.3 Assembly List Control Instructions

These control instructions are used to control the output format
of an assembly list such as page ejection, suppression of list
output, and subtitle output.

Assembly list control instructions include EJECT, NOLIST, LIST,
and SUBTITLE. Each of these control instructions is explained on

the following pages.

4-5

EJECT eject

(1) EJECT (eject)

Description Format .

$[4]EJECT |
$[2]1ET ; Abbreviated format

I
|

1st column

Function
The EJECT control instruction causes the assembler to execute
page ejection of an assembly list.

Use
Describe the EJECT control instruction in a line of the

source module at which the page ejection of the assembly
list is required.

Explanation

o When describing the EJECT control instruction, "$" must
be described in the 1st column of the source statement,

If you wish to provide a space between "$" and "EJECT",
input only one BLANK or TAB character,

o The image (i.e., $ EJECT) of the EJECT control instruction
itself will be printed at the top of the page after the page
ejection.

o If any of the following constructions or assembler options
has already been specified, the EJECT control instruction
will become invalid.

NOLIST, NOPRINT, NOPAGING

(For the NOPRINT and NOPAGING options, see Subsection 4.4.4,
"Description of each assembler option", in Chapter 4 of the
RA78K/I Assembler Package User's Manual for Operation.)

4-6

Application Example

<Source module>

MOV {DE+). A
BR $5
$ EJECT 1)
CSEG
END

(1) When page ejection is executed with the EJECT control
instruction, the assembly list will look like this.,

BR $s
- T T T T T T T T T T + Page ejection
$ EJECT
CSEG
_END

4-7

NOLIST no list _ NOLIST

(2) NOLIST (no list)

Description Format

$[A]NOLIST
$ (4 INOLI : Abbreviated format

{

1st column

Function
The NOLIST control instruction indicates to the assembler
the line at which assembly list oﬁtput must be suppressed.
All source statements described after the NOLIST control
instruction specification until the LIéT control instruction
appears in the source program will be assembled but will not
be output on the assembly list. h

c
n
®

|

Use the NOLIST control instruction to merely control the

amount of list output.

Explanation

0 When describing the NOLIST control instruction, "$" must
be described in the 1st column of the source statement,

If you wish to provide a space between "$" and "NOLIST",
input only one BLANK or TAB character.

o The NOLIST control instruction functions to suppress
assembly list output and is not intended to stop the
assembly process.

o If the LIST control instruction is specified after the
NOLIST control instruction, statements described after the
LIST contreocl instruction will be output again on the
assembly list.

o The NOLIST control instruction can also be described as an
assembler option in the start-up command line of the
assembler.

4-8

Application Example

be output on th
list. :

NAME SAMPI
s NOLIST 1)
DATA1 EQU . 10H
DATA2 EQU 11H Statements in this part
will not
: assembly
DATAX EQU 20H
$ LIST ")
CSEG
END

(1) Because the NOLIST control instruction is specified here,
statements after "$ NOLIST" and up to the LIST control
instruction in (2) will not be output on the assembly

(2)

list. The image of the NOLIST control instruction itself

will not be output on the list too.

Because the LIST control instruction is specified here,

statements after this control instruction will be output

again on the assembly list. The image of the LIST control

instruction will also be output on the list.

4-9

LIST list

(3) LIST (list}

Description Format

$[2]LIST
$la]LT , : Abbreviated format

T
|

1st column

Function
The LIST control instruction indicates to the assembler

the line at which assembly list output must be started.

[y
wn
©

Use the LIST control instruction to release the suppxession
of the assembly list output specified by the NOLIST control
instruction and to output the assembly list again.

By using the LIST control instruction in combination with
the NOLIST control instruction in a source program, the
output amount or contents of the assembly list can be
controlled.

Explanation

o When describing the LIST control instruction, "$" must be
described in the 1st column of the source statement.

If you wish to provide a space between "$" and "LIST",
input only one BLANK or TAB character.

o If the LIST control instruction is specified after the
NOLIST control instruction, statements described after the
LIST control instruction will be output again on the
assembly list. The image of the LIST control instruction
itself will also be printed on the assembly list.

o The LIST control instruction can also be described as an
assembler option in the start-up command line of the

assembler.

Application Example
See the Application Example of the NOLIST control

instruction.

SUBTITLE subtitle SUBTITLE

(4) SUBTITLE (subtitle)

Description Format

$[2]SUBTITLE('character string')
$[a]1ST('character string') ; Abbreviated format

I

1st column

Function

The SUBTITLE control instruction specifies the character
string to be printed on the SUBTITLE section at each page
header of an assembly list.

Use the SUBTITLE control instruction to print a subtitle on
each page of an assembly so that the contents of the assembly
list can be readily identified. The character string of a

subtitle may be changed for each page.

Explanation

o When describing the SUBTITLE control instruction, "$" must

be described in the 1st column of the source statement.

If you wish to provide a space between "$" and "SUBTITLE",
input only one BLANK or TAB character.

Up to 60 characters can be specified as the character

string of a subtitle.

Description of a character string in excess of 61 characters
as a subtitle will result in an error. However, the first 60
characters of the character string will be accepted as
valid.

The character string specified with the SUBTITLE control
instruction will be printed in the SUBTITLE section on the
2nd page of the assembly list.

section on each page will be left blank.
o This control instruction can also be specified as an
assembler option in the start-up command line of the

assembler.

Note

When the SUBTITLE control instruction is to be specified as an

assembler option in the start-up command line of the

assembler, pay attention to the following points:

o The character string to be specified as a subtitle need not
be enclosed in a pair of single gquotation marks. With the
MS-DOS or PC-DOS based system, an error will result if the
character string is enclosed in a pair of single guotation
marks.

o No Blank characters can be used as the character string.

o If more than 60 characters are specified as the character
string, an error will result and the program execution
will be aborted.

4-13

Application Example

<Source module>

NAME - SAMP

CSEG

SUBTITLEC'THIS 1S SUBTITLE 1°) (1)
EJECT L)
CSEG

SUBTITLE('THIS 1S SUBTITLE 2°) :(3)
EJECT ity

CSEG

END

(1)

(2)
(3)

(4)

This control instruction specifies character string
"THIS IS SUBTITLE 1".

This control instruction indicates page ejection.
This control instruction specifies character string
"THIS IS SUBTITLE 2".

This control instruction indicates page ejection.

When the source program in the above example is assembled,

the assembly list will look like this.

Cosyright (C} 1988 NEC Corporatlon

DCOM-T8K/t ASSEMBLER VX. X DATE PAGE
SOURCE FILEY TEXT.ASM
0BJECT FILE) TEXT.AEL
COMAND 1 RATBK) TEXT. ASM PROCESSORt112)
ASSEMALE 11ST
STNG ADRS R OBJECT W | SOURCE STATEMENT
i NAME SAMP
2 CSEG
E SUBTITLEC'THIS IS SUBTITLE 1) t(1)
YOOU-T8K1 ASSEMBLER ¥X. X DATE PAGE 2
THIS 1S SUBTITLE)
s EJcT 2
3 CSEQ
s SUBTITLEC'THIS 15 SUBTITLE 2 162
LCOW-T8K1 ASSEMBLER VX, X DATE PAGE 3
THIS IS SUBTITLE 2
H EJECT i
1 csea
5 e

-~ Page ejection by
instruction in (2}

«-Subtitlé printing by
instruction in {1}

«~ Page ejection by
instruction in (4}

-~ Subtitle printing by’
instruction in (3)

4.4 Control Instructions for Conditional Assembly

Conditional assembly control instructions select a series of
statements in a source module as those subject to assembly or not
subject to assembly by setting switches for conditional assembly.
Conditional assembly control instructions are available in two
groups: one group to set the condition for limiting source
statements subject to assembly (IF, ELSEIF, ELSE, and ENDIF) and
the other, to give a true or false value to a specified switch
name (SET and RESET).

Each group of these control instructions is detailed on the
following pages,

By making the best of these control instructions, assembly of a
source module by excluding unwanted statements can be executed
with little or no change to the source module.

IF, ELSEIF, ELSE, ENDIF

(1) IF, ELSEIF, ELSE, ENDIF

Description Format

$(&]IF(switch name(:switch name[...]])
${2)ELSEIF(switch name[:switch name(...1])
$[A]ELSE

$[o]ENDIF

1.

1st column

Function

o These control instructions set the conditions to limit
source statements subject to conditional assembly and those
not subject to conditional assembly. '
Source statements described between the IF control instruc-
tion and the ENDIF control instruction are subject to
conditional assembly.

0 If the value of the switch name specified by the IF control

instruction (i.e., IF condition) is true (0FFH), source

statements described after this IF control instruction until
the appearance of the next conditional assembly control
instruction (ELSEIF, ELSE, or ENDIF) in the source program
will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF
éontrol instruction.
If the IF condition is false (00H), source statements.
described after this IF control instruction until the
appearance of the next conditional assembly control
instruction (ELSEIF, ELSE, or ENDIF) in the source program
will be not assembled,

o The ELSEIF control instruction is checked for true/false
value of its switch name(s) only when the conditions of the

IF control instruction described before this ELSEIF control
instruction are not satisfied (i.e., all the switch name
values are false).

4-17

=]

control instruction {i.e., ELSEIF condition) is true (O0FFH),

source statements described after this ELSEIF control.
instruction until the appearance of the next conditional
assembly control instruction (ELSEIF, ELSE, or'ENDIF):in the
source program will be assembled. For subsequent assembly
processing, the assembler will proceed to the statement next
to the ENDIF control instruction,

If the ELSEIF condition is false (00H), source statements
described after this ELSEIF control instruction until the
appearance of the next conditional assembly control
instruction (ELSEIF, ELSE, or-ENDIF) in the source program
will be not assembled. ‘ o

If all the conditions of the IF and ELSEIF control instruc-
tions described before the ELSE control instruction are not
satisfied (i.e., the switch name values are all false), '
source statements described after. this ELSE control instruc-
tion until the appearance of the ENDIF control instruction
in the source program will be assembled.

The ENDIF control instruction indicates to the assembler

the termination of source statements subject to conditional
assembly.

With these conaitional assembly contrel instructions, source
statements subject to assembly can be changed without major
modifications to the source program.

If a statement for debugging necessary only during the
program development is described in a source program,
whether or not the debugging statement should be assembled
(translated into machine language) can be-specified by

setting switches for conditional assembly.

Explanation

© When describing any of the IF, ELSEIF, ELSE, and ENDIF

control instructions, "$" must be described in the 1st
column of the source statement.

these control instructions, input only one BLANK or TAB

character.

o With the IF and ELSEIF control instructions, at least one

switch name must be described.

The rules of describing switch names are the same as the
conventions of symbol description, for which see Subsection
2.2.3, "symbol field" in Chapter 2. However, note that
underscore {_) cannot be used to describe any switch name.
Up to five switch names can be used per module.

1f two or more switch names are to be specified with the IF
or ELSEIF control instruction, delimit each switch name with
a colon (:).

When two or more switch names have been specified with the
IF or ELSEIF control instruction, the IF or ELSEIF condition
is judged as satisfied if one of the switch name values is
true (OFFH).

The value of each switch name to be specified with the IF

or ELSEIF control instruction must be defined with the SET
or RESET control instruction., (See (2), "SET, RESET" in this
section.) Therefore, the value of the switch name specified
with the IF or ELSEIF control instruction must have been

set in the source module with the SET or RESET control

instruction.

o Within an IF-ENDIF block, another IF-ENDIF block cannot be

described. (Nesting of IF statements is not allowed.)
In conditional assembly, object codes will not be generated

for statements not assembled, but these statements will be
output as is on the assembly list.

Application Example

Example 1
textO
$ IF(8WI1))
textl
$ ENDIF (2
END’

(1) If the value of switch name "SW1" is true.(OFFH),
statements in "text1" will be assémbled '
If the value of switch name "Sw1" is false (0O0H),
statements in "text1" will not be assembled.
The value of switch name "sw1" has been set to true
(OFFH) or false (00H) with the SET or RESET control
instruction described in "text0". _

(2) This instruction indicates the end of the source

statement range for conditional assembly.

Example 2

text0

$ IF(SW1) (1)

textl

§ ELSE +(2)

text2

$ ENDIF :(3)

END

(1) The value of switch name "SW1" has been set to true
{OFFH) or false (00H) with the SET or RESET control
instruction described in "text0". '

If the value of switch name "SW1" is true (OFFH),
statements in "text1" will be assembled and statements in
"text2" will not be assembled.

(2) If the value of switch name "SW1" is false {00H),
statements in "text1" will not be assembled and statements
in "text2" will be assembled.

(3) This instruction indicates the end of the source statement

range for conditional assembly.

Example 3

text0

$ IF(8W1) 1)
textl

$ ELSEIF(SW2) (2
text2 |

$ ELSEIF(SW3) 3
textl

$ ELSE H)]
textd

$ ENDIF i(5)

END

(1) The values of switch names "sw1", "sw2", and

(2)

(3)

(4)

(5)

been set to true” (0FFH) or false "QOH" with the SET or
RESET control instruction described in "text0".

If the value
"text1" will
"text3", and
If the value
"text1" will

of switch name "SW1" is true, statements in
be assembled and statements in "text2",
"text4" will not be assembled.

of switch name "SWi" is false, statements in
not be assembled and_conditional assembly of

statements in "text2" and thereafter will be executed.

If the value

of switch name "gsw1" in (1) is false and the

value of switch name "SW2" is frue, statements in "text2"

will be assembled and statements in "text1", "text3", and

"textd" will

not be assembled.

If the values of both switch names "sSw1" in (1) and "sw2"

in (2) are false and the value of switch name "SW3" is
true, statements in "text3" will be assembled and

assembled.

statements in "text1", "text2" and "text4" will not be

If the values of switch names "SW1" in (1), "sw2" in (2),

and "SW3" in

(3) are all false, statements in "text4” will

be assembled and statements in "text1", "text2" and

"rext3i" will

not be assembled.

This instruction indicates the end of the source statement

range for conditional assembly.

4-22

Example 4
text?
$ IF(SWA:SWB) Hi)
textl
$ ENDIF (2
END

(1) The values of switch names "SWA" and "SWB" have been set
to true (OFPFH) or false "00H" with the SET or RESET
control instruction descfibed in "textoO".

If the value of switch name "SWA" or "SWB" is true (OFFH},
statements in "text1" will be assembled.

If the values of both switch names "SWA" and "SWB" are
false, statements in-"text!" will not be assembled.

(2) This instruction indicates the end of the source statement

range for conditional assembly.

SET, RESET set, reset SET, RESET

(2) SET, RESET (set, reset)

Description Format

$[2]SET(switch name[:switch name[...]])

$[4 JRESET(switch name[:switch name[...]])

t

1st column

Function .

o The SET and RESET control instructions give a value (true or

false) to each switch name to be specified with the IF or
ELSE control instruction, :

The SET control instruction gives a true value (0OFFH) to
the switch name specified in the operand.

The RESET control instruction gives a false value (00H) to

the switch name(s) specified in the operand.

Describe the SET control instruction to give a true value
(OFFH) to a switch name to be specified with the IF or
ELSEIF control instruction.

Describe the RESET control instruction to give a false value
(00H) to a switch name to be specified with the IF or

ELSEIF control instruction,

Explanation

o When describing the SET and RESET control instructions, "§"

must be described in the 1st column of the source statement.
If you wish to provide a space between "$" and each of

these control instructions, input only one BLANK or TAB
character,

o With the SET and RESET control instructions, at least one

switch name must be described.

4-24

conventions of symbol description, for which see Subsection
2.2.3, "Symbol field" in Chapter 2. However, note that

underscore {_) cannot be used to describe any switch name.
Up to five switch names can be used per module,

If two or more switch names are to be specified with the SET
or RESET control instruction, delimit each switch name with
a colon {:).

The switch name once set to "true" with the SET control
instruction can be changed to "false" with the RESET control
instruction, and vice versa.

A switch name to be specified with the IF or ELSEIF control
instruction must be defined at least once with the SET or
RESET control instruction in the source module before
describing the IF or ELSEIF control instruction.

The SET and RESET control instructions can also be specified
as assembler options in the start-up command line of the
assembler,

4-25

Application Example

Example 1

(1)

(2)

(3)

(4)

(5)

$ SET{8W1)

[IF({SW1)
textl

$ ENDIF

3 RESET({SWI1.8Wz2)

$ IF(SW1)
text2

$ ELSEIF(8SW2)
tex13d

$ ELSE
textd

3 ENDIF

END

(1)

2

i(3)
(@)

H)]

; (6}

7

;1 @8)

This instruction gives a true value (OFFH) to switch name

"SWi".

Because the true value has been given to switch name "sw1"
in (1) above, statements in "text1" will be assembled.
This instruction indicates the end of the source statement
range for conditional assembly, which starts from (2).

This instruction gives a false value (00H) to switch names

"swi" and "sw2".

Because the false value has been given to switch name
"SW1" in (4) above, statements in "text2" will not be

assembled.

k(6) Because the false value has also been given to switch name
"gWw2" in (4) above, statements in "text3" will not be
assembled.

(7) Because both switch names "sw1" and "sw2" are false in (5)
and (6) above, statements in "text4" will be assembled.

(8) This instruction indicates the end of the source statement

range for conditional assembly, which starts from (5).

CHAPTER 5. MACROS

5.1 Overview of Macro

When you must describe a series of instruction groups over and
over again in a source program, use of a macro function is very
useful for program description.

The macro function refers to the expansion of a series of instruc-
tion groups defined as a macro body with MACRO and ENDM directives
into the location where the macro name is referenced,

A macro is used to increase coding efficiency of a source program
and is different from a subroutine.

A macro and a subroutine each have the following features and
should be used selectively according to the specific purpose.

(1) Subroutine

o Describe a process (or the same sequence of instructions)
which has to be repeated over and over again in a program
as a subroutine. The subroutine will be converted into
machine language just once by the assembler.

o To call the subroutine, you only need to describe a
subroutine call instruction. (Generally, instructions to
set arguments are also described before and after the
subroutine.)

Therefore, by making the best of subroutines, the program
memory can be used with high efficiency.

o By coding a series of processes in a program as subroutines,
the program can be structurized. (By this structurization,
the programmer can easily understand the overall structure
of the program, thus making the program design easy.)

{2) Macro

o The basic function of a macro is the replacement of a group
of instructions with a name,

A series of instruction groups defined as a macro body with
MACRO and ENDM directives will be expanded into the location
where the macro name is referenced.

o When the assembler detects a macro reference, the assembler
expands the macro body and converts the group of instruc-
tions into machine language while replacing the formal
parameter(s) of the macro body with the actual parameters at
the time of the macro reference.

5-1

o Parameters can be described for a macro.
For example, if there are instruction groups which are the
same in processing procedure but are different in data to
be described in the operand, define a macro by assigning
formal parameter({s) to the data. By describing the macro
name and the actual parameter(s) at macro reference time,
the assembler can cope with various instruction groups which

differ only in part of the statement description,

The programming technique with subroutines is mainly used for
memory size reduction and program structurization, whereas macros
are used to increase coding efficiency of the program.

. 5.2 Utilization of Macros

5.2.1 Macrodefinition
A macro is defined with the MACRO and ENDM directives.

Description Format

Symbol Mnemonic Operand Comment
field field field field
macro name MACRO [formal parameter[,...]] [;jcomment]
ENDM
Function

The MACRO directive executes a macrodefinition by assigning
the macro name specified in the Symbol field to-a series of
statements (called a macro body) described between this
directive and the ENDM directive.

Application Example

ADMAC MACRO PARA:, PARAZ2

MOV A, #PARAL
ADD A, #PARAZ
ENDM

The above example shows a simple macrodefinition which
specifies the addition of two values PARA1 and PARAZ and the
storage of the result in register A. The macro is given a
name "ADMAC" and "PARA1" and "PARA2" are formal parameters.
For details, see (1) MACRO in Section 3.7, Macro Directives,
Chapter 3.

5-3

5.2.2 Macro reference

To call a macro, the already defined macro name must be described

in the Mnemonic field of the source program.

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:} macro name [actual parameter([,...]] [; comment]
Function

This directive calls the macro body assigned to the macro

name specified in the Mnemonic field.

Use

Use this directive description to call a macro body.

Explanation

o The macro name to be specified in the Mnemonic field must
have been defined before the macro reference.

o A constant, expression, name, or label can be described
as the operand of this directive.

o Formal parameters are replaced with their corresponding
actual parameters in sequence from left to right.

0 An error will result if the number of formal parameters

is not equal to the number of actual parameters.

.Application Example

NAME SAMPLE
ADMAC MACRO PARAY ,PARAZ

MOV A,#PARAL

ADD A,#PARAZ

ENDM:

CSEG

ADMAC 10H, 20H

END

This directive calls the already defined macro name "ADMAC",
10H and 20H are actual parameters.

5.2.3 Macroexpansion
The assembler processes a macro as follows:

0 Stores the macro body of the defined macro name in the
symbol table area (an area within the assembler).

o Searches the macro body corresponding to the referenced
macro name from the symbol table area and expands it to
the location where the macro name is referenced.

o Assembles statements in the expanded macro body just the

same as other statements.

Application Example

When the macro referenced in Subsection 5.2.,2, "Macro
reference" is assembled, the macro body will be expanded as

shown below.

NAME SAMPLE

ADMAC MACRO PARAI .PARAZ
MOY A.%#PARAL Macrodefinition
ADD A.%PARAZ
ENDM
CSEG

ADMAC 10H.,20H)

MOV A .FPARAL

Macroexpansion
ADD A, F*PARAZ :
END

By the macro reference in (1}, the macro body will be
expanded. On the assembly list in this case, the formal
parameters within the macro body are not replaced with the
actual parameters. However, in object code generation, the
formal parameters will be replaced with the actual parameters
as shown below.

(Object code)

MOV A, #PARAT — B910
ADD A, #PARA2 - A820

5-6

5.3 Symbols within Macro

Symbols that can be defined in a macro are divided into two types:

global symbols and local symbols.

(1) Global symbols

(2)

o A global symbol is a symbol that can be referenced from any

statement within a source program.

Therefore, if a series of statements are expanded by
referencing a macro in which the global symbol has been
defined, the symbol will cause a double definition error.

o Symbols not defined with the LOCAL directive are global.

Local symbols
o A local symbol is a symbol defined with the LOCAL directive.

(See (2) LOCAL in Section 3.7, "Macro directives".)

A local symbol is valid within the macro in which the local
symbol has been defined.

Therefore, if a series of statements are expanded by
referencing a macro in which the local symbol has been
defined, the symbol will not cause a double definition
error.

No local symbol can be referenced from outside the macro.

Application Example

(1)
(2)

(3}

(4)

(5)

{(6)

{7)

¢<Source program’

NAME SAMPLE
MAC1 MACRO
" LOCAL LLAB - 1)
LLAB: .
Macrodefinition
GLAB:
BR $LLAB)]
BR $GLAB @
ENDM
REF1 . MAC) Coale) —t— Macro reference.
BR ILLAB ;(5)
BR | GLAB 16
REF2: MAC1 V(7 -—1— Macro reference
END

This directive defines label "LLAB" as a local symbol.
This instruction references local symbol "LLAB" in
macro MAC1.

This instruction references global symbol "GLAB" in
macro MAC1.

This directive references macro MACT,

This instruction references local symbol "LLAB" from
outside the definition of macro MAC1., This description
cause an error when the source program is assembled.
This instruction references global symbol "GLAB" from
outside the definition of macro MAC1.

This directive references macro MAC1. The same macro

is referenced twice.

When the source program in the above program is assembled,

the macro body will be expanded as shown below.

5-8

NAME
REF1: MAC1

LOCAL LLAB Macroexpansion
LLAB:
GLAB: Error

BR $LLAB

BR $GLAB

BR ILLAB Error

BR {GLAB
REF2: MAC]

LOCAL LLAB Macroexpangion
LLAB:
GLAB: e Error

BR SLLAB

BR SGLAB

END

Global symbol "GLAB" has been defined in macro MACT.

Because macro MAC1 is referenced twice, global symbol

"GLAB" causes a double definition error as a result of

expanding a series of statements in the macro body.

5-9

CHAPTER 6., PRODUCT UTILIZATION

There are several ways to effective use this package for assembly
of source modules. Only a few of these techniques are introduced

in this section.

(1) Specification of assembler options
It is better to specify assembler options you always use at
the beginning of each source module. Especially, the PROCESSOR
option which cannot be omitted from specification should be
specified in the module header. Then, you do not need to
specify the option in the command line each time you start up
the assembler program. An error will result if you forget to
specify this option in the command line and you must start
up the assembler again from the beginning with the correct
assembler options.
The DEBUG and XREF options should also be specified in the

module header.

Example ' :
$ PROCESSOR(112)
$ DEBUG
] XREF
NAME TEST
CSEG:

(2) Definition of short direct addressing area

The short direct addressing area (addresses (QFE20H to OFFiFH
with uPD78122/78124 or OFE40H to OFF1FH with uPD78112) is an
area which can be accessed with instructions of short byte
length as compared with other data memory areas.

Therefore, by making the best of this area, a program with
high memory utilization efficiency can- be developed.

So, you must determine. the memory map of this short direct
addressing area before you start developing any program.
Then, describe the data definition of the short direct
addressing area with absolute addresses at the beginning of

each source module.

Example]
NAME TEST
WORK1 EQU OFEZ0H Describe the data
definition of each
WQRK2 EQU 0OFE21H work area with
. absolute address(es}
at the beginning of
the source module,
WORKX EQU OFEFFH
CSEG
MOV WORK1, #00H
END

APPENDIX A, LIST OF RESERVED WORDS

Reserved words are available in five types: machine language
instructions, directives, operators, register names, and sfr
symbols,

A reserved word is a word or sequence of letters and/or symbols
(a character string} which has unique meaning. These words have
been reserved beforehand by the assembler and cannot be used for
other than the intended purposes.

Types of reserved words that can be described in each field of

a source program and a list of reserved words are shown in
Tables A-1 and A-2, respectively.

Table A-1. Types of Reserved Words That Can Be Described

in Respective Fields of Source Program

Symbol field All reserved words cannot be described in
this field.
Mnemonic field Only machine language instructions and

directives can be described in this field.

Operand field Only operators, sfr symbols, and register

names can be described in this field.

Comment field All reserved words can be described in
this field.

Table A-2, List of Reserved Words

Instructions | ADD ADDC ADJBA ADJBS AND AND1
ADDW BC BE BF BL BNC
BNE BNL BNZ BR BT BTCLR
B2 CALL CALLF CALLT CLR1 CMP
CMPW DBN2Z DEC DECW - bI _ DIVUW
EI INC INCH MOV MOVW. . MOV
MULUW NOP NOT1 OR OR1, POP
PUSH RET RETI . ROL ROLC ROR
RORC ROL4 ROR4 SEL SET1 SHL
SHR SHLW SHRW .SUB SUBC SUBW
XCH XOR XOR1

Operators AND EQ GE GT HIGH LE
LOW LT MOD NE NOT OR
SHL SHR XOR

Special 3 STKBEG STKEND

reserved .

words

Directives BR CSEG DB DBIT DS DSEG
DW END ENDM EQU EXITM EXTBIT
EXTRN IRP LOCAL MACRO ' NAME ORG
PUBLIC REPT SET SFR SFRP

Table A-2. List of Reserved Words (contd)

sfr symbols ADM CLOM CPTO CPT1 CPT2 CPT3
CPTM CROO CRO1 CRO2 CR10 CR11
CR12 CR20 CR21 CR22 CR30 CRCO
CRC1 CRC2 CSIM EDVC FRC ICR
IFO IFOL IFOH INTMO INTM? . ISMO
ISMOH ISMOL ISOH IST MKO MKOL
MKDOH MM PO POH POL P1
P2 P3 P4 P5 Pé6 PMO
PM1 PM3 PM5 PM6 PMC3 PRO
PROL PROH PRMO PRM1 PUO PWMO
PWM1 PWMC RTPC SA SI0 STBC
T™O0 TM1 TM2 TM3 TMCO TMC1
TOC

Register 4 AX B C CY D

names E H BL L PSW RO
R1 R2 R3 R4 R5 R6
R7 RPO RP1 RP2 RP3 RBO
RB1 RB2 RB3 RB4 RB5S RB6
RB7 SP STBC

Segment CALLTO FIXED

attributes

APPENDIX B. LIST

OF DIRECTIVES

Table B-1. List of Directives
No. Directive Function/
Symbol Mnemonic | Operand Comment classification
field field field field .
1 jisegment |[CSEG freloc. {;comment])] Declares the start
name] attr.] of a.code segment.
2 |[segment jDSEG None [;comment])] Declares the start
name] of a data segment.
3 |[segment |BSEG None [;comment]| Declares the start
name } of ‘a bit segment.
4 [[segment |ORG expres- | [;comment]] Declares the start
name] sion ~of -an absolute
segment; (See Note
1.)
5 [None ENDS None [;comment]| Indicates the end
of the segment,
6 mname EQU expres- [;comment]| Defines a name.
sion (See Note 2.)
name:symbol)
7 mame SET expres- [jcomment] Defines a relocat-
sion able name. (See
Note 1.)
name : symbol
8 |[label:] |DB [(size}] [;comment]] Initializes or
[initial reserves a byte
value data area.
[e00]] (See Note 3.)
label :symbol
g I[label:] |DW [{(size)] [;comment]| Initializes or
finitial reserves a word
value data area.
[,0ae1] label :symbol
10 |[label:] |DS expres- [;comment]| Reserves a byte
sion data area. (See
Note 1.)
label :symbol

‘Table B-1. List of Directives (contd)
No. Directive Function/
Symbol Mnemonic | Operand Comment classification
field field field field
11 [name] DBIT None [;comment]| Reserves a bit
data area. (See
Note 1.)
name:symbol
12 |[label;] |PUBLIC symbol [;comment]}| Declares an
name external defini-
[,e..] tion name.
13 |({label:] | EXTRN symbol {;comment]| Declares an
name external reference
[,o0--] name .
14 ([label:]) |EXTBIT symbol [;comment}l| Declares an
name external reference
[,e00] name. Symbol names
are limited to
those having a bit
value.
15 |{[label:] |NAME module {;comment]| Defines a module
name name.
[,ee.] module name:symbol
16 |[label:] |BR expres- [jcomment]| Automatically
sion selects a Branch
[rasal] instruction,
label:symbol
17 |macro MACRO [formal [;comment]}| Defines a macro.
name ' parameter
[,.041]1 macro name:symbol
18 |{[label:] | LOCAL symbol [;comment]| Defines a symbol
name valid only within
[,-0.] the macro. (See
Note 4.)
label: symbol

Table B-1. List of Directives (contd)

No. Directive Function/

Symbol Mnemonic | Operand Comment classification
field field field field _

19 |[[label:] REPT expres- [;comment]}| Defines the repeat

sion count in macro-
expansion,
label: symbol

20 ([label:] |IRP formal [;comment]}] Expands the macro

pafameter, body by replacing
<actual formal parameters
parametef with actual para-
{,...1 meters.
label:symbol

21 |[None EXITM None [;comment])| Interrupts. the
macroexpansion.
(See Note 4,)

22 |None ENDM None [;comment]| Indicates the end
of macrodefinition.
(See Note 4.)

23 |None END None [; comment] Indica&es the end
of th source
module

NOTE: 1. Forward reference of a symbol is not allowed in the

expression described in the Operand field.

Neither forward reference of a symbol nor reference

of an external reference name is allowed in the

expression described in the Operand field.

A character string may be described in place of

an initial

value.

This directive can be used only in the macro-

definition.

'APPENDIX C. INSTRUCTION SET OF uCOM-78K/I

APP C-1. Instruction Set and Its Operation

(1) Representation formats and description methods of operands

Describe an operand in the Operand field of each instruction
according to the description method for the operand
representation format of the instruction. (For details, see
the assembler specifications.) If two or more elements exist
in the description method, select one of the elements.
Elements written in uppercase letters and symbols +, -, #,
$, !, and [] are keywords and must be described as is in
the Operand field. The meanings of these symbols are as
follows:

: Autoincrement

: Immediate data

=+

: Address by an immediate addressing method

: Address by a relative addressing method

"'-.,_‘.w

: Bit inversion

[]2 Indirect addressing
With an immediate data, describe an appropriate numeric value
or label as the data. When describing it with a label, symbol

#, $, !, or [] must also be described.

Table C-1. Representation Formats and Description Met’o-b

of Operands

Representation | Description method
format . .
r X(RO),A(R1),C(R2),B(R3),E(R4)},D(R5),L(R6),H(R7)
r1 A,B
r2 B,C
r3 D,E,E+
rd D,E '
rp AX(RPO),BC(RP1),DE(RP2),HL{RP3)
sfr Special function register symbol (see Table C-2.)
sfrp Special function register symbol (register
capable of 16-bit manipulation; see Table C-2.)
saddr FE40H-FF1FH Immediate data or label (with
uPD78112)
FE20H-FF1FH Immediate data or label (with
uPD78122/78124)
saddrp FE40H-FF1EH Immediate data (with bit 0 = 0) or
label (in 16-bit manipulation)
(with uPD78112) .
FE20H-FF1EH Immediate data (with bit 0 = 0) or
label (in 16-bit manipulation)
{with uPD78122/78124)
taddr13 0000H-1FFFH Immediate data or label (with
uPD78112) ... Immediate addressing
taddri16 0000H-3FFFH Immediate data or label (with
uPD78122/78124) ... Immediate
addressing
$addr13 0000H-1FFFH Immediate data or label {with
uPD78112} ... Relative addressing
$addrie 0000H-3FFFH Immediate data or label (with
uPD78122/78124) ... Relative
addressing
addr11 800H-FFFH Immediate data or label
addr5 40H-7EH Immediate data (with bit 0 = 0) or

label

A-8

of Operands {contd)

Representation | Description method

format
word 16-bit immediate data or label
byte 8-bit immediate data or label
‘bit 3-bit immediate data or label
n 3-bit immediate data {0 - 7)
RBn RBO - RB3
NOTE: 1. In register representation formats "r" and "rp'",

registers may also be described with absolute names
(RO to R7, RPC to RP3) in addition to absolute names
(X, A, C, B, E, D, L, H, AX, BC, DE, HL).

In the immediate addressing method, the operand(s) of
an instruction can be addressed to any memory space,
whereas in the relative addressing method, the
opérand(s) of an instruction can be addressed only
within the range of -128 to +127 bytes from the first

address of the next instruction.

t= > c> I o B T v s B

RO-R7
AX

BC

DE

HL
RPO-RP3

PC

SP

PSW

CY

AC

Z
RBSO-RBS1
IE

STBC

()

xxH
xH

XL

B m O 0wk

.

.y . s e

(2) Legend of symbols in "Operation'" column

register; 8-bit accumulator

register

register

register

register

register

register

register

Register 0 to register 7 (absolute names)
Register pair AX; 16-bit accumulator

Register pair BC

Register pair DE

Register pair HL

Register pair 0 to register pair 3 (absolute
names)

Program counter

Stack pointer

Program status word

Carry flag

Auxiliary carry flag.

Zero flag

Register bank select flags

Interrupt enable flag

Standby control register

Refers to the memory contents indicated by the
address or register in parentheses ({).
Hexadecimal number
High-order 8 bits

Low-order 8 bits of 16-bit register

of 16-bit register

~(3) Symbols in "Clocks" column

(a)

(b)

(c)

(d)

If "n" is indicated in the "Clocks" column for a Shift or
Rotate instruction, the value of "n" refers to the number
of bits to be shifted.

The number indicated in () in the "Clocks" column for a
conditional branch instruction indicates the number of
clocks of the instruction when branching is not executed.
When accessing an SFR by register deferred addressing
([HL}]) or indexed addressing (word[r1]), the latter of the
two values separated by a slash in the "Clocks" column
becomes the number of clocks for the instruction,

In indexed addressing, if an overflow occurs in the
result of "word + r1", the number of clocks of the
instruction increases to the number indicated in () in

the "Clocks" column for the instruction.

(4) Legend of symbols in "Flag" column

Symbol Description
{blank) Flag contents will remain unchanged.
0 Flag contents are cleared to 0.
1 Flag contents are set to 1.
X Flag contents are set or cleared according
to the result.
R Previously saved contents are restored.

A-11

(5) Special function registers (SFR)

The SFR refers to a group of registers to which special
functions have been assigned, such as mode registers for
various peripheral devices and control -register.

The special function register group is mapped to an 256-
byte area (addresses FF00H to FFFFH).

These SFR registers can be manipulated in various ways with
arithmetic operation instructions, move (transfer) instruc-
tions, and bit manipulation instructions.

Table C-1 shows a list of special function registers (SFR)
with the uPD78112 and Table C-2 shows the same list with the
uPD78122/78124. .

The meanings of the symbols used in these tables are as
follows:

o sfr symbol Symbol indicating the address of the
built-in special function register. This SFR
symbol can be described in the Operand field
of an instruction.

O R/W +eeeusensn. Indicates whether the special function
register is readable or writable,

R/W: Read/wWrite

.R: Read only

W: Write only

o Manipulatable.. Indicates the unit of bits that can be
bit units handled when manipulating the contents of

each SFR register. If an SFR is capable of‘
manipulation in units of 16 bits, the
register can be described as operand "sfrp'".
If an SFR is capable of 1-bit manipulation,
the register can be described in the operand
field of a bit manipulation instruction,

o At RESET Indicates the status of each register when
RESET input is applied.

NOTE: In Tables C-1 and C-2, an address to which no special
function register is assigned cannot be accessed.

register 1

Address | Special function sfr R/W | Manipulatable At
register (SFR) symbol bit units RESET
name 1 8 16
bit | bits| bits
FFO1H Port 1 P1 R/W] o o -
FFO2H Port 2 P2 R Q 0 -
FFO34 Port 3 P3 e) 0
FF(O4H Port 4 P4 o o} -
FFO5H Port 5 P5 o o]
FFO6H FPort 6 Po6 o o -
FFO8H 16-bit timer 0/ CROO - - o
FFO9H compare register 0 - -
FFOAH 16-bit timer 0/ CRO1 R/W | - - o
FFOBH compare register 1 - -
FFOCH 16-bit timer 0/ CRO2 - - o
FFODH compare register 2 - -
FFOEH 16-bit timer 1/ CR10 - - o Un-
FFOFH compare register 0 - - known
FF10H 16-bit timer 1/ CR11 - - o)
FF11H compare register 1 - -
FF12H 16-bit timer 1/ CR12 - - o
FF13H capture register 2 = -
FF14H 16-bit FRC CPTO - - o]
FF15H capture register 0 - -
FF16H 16-bit FRC CPT1 R - - O
FF17H capture register 1 = -
FF18H 16-bit FRC CPT2 - - o}
FF19H capture register 2 - -
FF1AH 16-bit FRC CPT3 - = o}
FF1BH capture register 3 - -
FF1EH T6-bit timer 2/ CR20 R/W | - - o
FF1FH compare register 0 - -
FF21H Port 1 mode register | PMI - o - 3FH
FF23H Port 3 mode register | PM3 W - 0 -
FF25H Port 5 mode register | PM5 - (o] - FFH
FF26H Port 6 mode register | PM6 - 0 -
FF30H 16-bit timer/ TMO - - o
FF31H register 0 - -
FF32H 16-bit timer/ ™1 - - o
FF33H register 1 R - Un-
FF34H 16-bit free-running FRC - - o) known
FF35H counter - -
FF36H 16-bit timer/ TM2 - - o
FF37H register 2 - -
FF38H Timer control T™™CO W -
register 0 -
FF39H Timer control TMC1 R/W | - o 004

Table C-1. List of Special Function Registers (SFR)

with uPD78112 (contd)

Address | Special function sfr R/W | Manipulatable At
register (SFR) symbol bit units RESET]
name 1 8 16
bit | bits| bits
FF3AH Capture mode register {CPTM - o -
FF43H Port 3 mode control PMC3 - o - 30H
register)
FF50H Input control ICR - o -
register
FF53H Event divider EDVC - o - Un-
control register known
FF68H A/D conversion ADM R/W | - o - 01H
mode register
FF6AH A/D conversion SA R - o - Un-
sequential compare known
register
FF70H PWM control register [PWMC - o - 05H
FF72H PWM modulo register 0 [PWMO - - o :
FF73H |} - - Un-
FF74H PWM modulo register 1 |PWMI -~ -~ o) known
FF75H - - :
FF80H Serial interface mode |CSIM - o - 10H
register
-FF86H Serial shift register |SIO - o] - Un-
: R/W known
FFCOH Standby control STBC - o} - 00H
register
FFC4H Memory mapping MM W - o} - 00H
register
FFEQH Interrupt regquest IFOL | IFO 0 o o} 00H
FFE1H flag register IFOH o) o) 00H
FFE4H Interrupt mask MKOL | MKO R/W o 0 o FFH
FFESH register MKQH o e] FFH
FFECH Interrupt service ISMOL| I1SMO o] o o 00H
FFEDH mode register ISMOH 0 o} Q0H
FFF4H External interrupt INTMO - o) 50H
mode register W -
FFF5H External capture INTM1 - o

input mode register

Table C-2. List of Special Function Registers (SFR)
with uPD78122/uPD78124

Address | Special function sfr R/W | Manipulatable | At
register (SFR) symbol bit units RESET)
name 1 8 16
bit | bits] bits
FFOOH Port 0 PO R/W | o o -
FFO1H Port 1 P1 0 o
FFOZH Port 2 P2 R 0 o) -
FF03H Port 3 P3 o o
FFQO4H Port 4 P4 s} o] - Un-
FFO5H Port 5 P5 s} o known
FFO6H Port 6 P6 0 o]
FPFOAH Port 0 POL o o
buf fer
register -
FFOBH Port O POH (o} o}
buffer
register
FFOCH Real-time output port| RTPC o} o - 00H
control register
FF10H 16-bit compare CROO R/W ~ - o)
FF11H register 0 - -
FF12H 16-bit compare CRO1 - ~ o
FF13H register 1 ~ -~
FF14H 8-bit compare CR10 - o
register (CH1-0) : -
FF15H 8-bit compare CR20 - o]
register (CH2-0)
FF16H 8-bit compare CR21 - o)
register (CH2-1) - Un-
FF17H 8-bit compare CR30 - o known
register
FF18H 16-bit capture CR0O2 - - o
FF19H register R - -
FF1AH 8-bit capture CR22 - o -
register
FF1CH 8-bit capture/compare| CR11 R/W - o) -
register (CH1-1)
FFZ20H Port 0 mode register | PMO - o -
FF21H Port 1 mode register |[PMI - 0 - FFH
FF23H Port 3 mode register | PM3 - o -
FF25H Port 5 mode register | PM5 - o] - FFH
FF26H Port 6 mode register | PM6 - 0 - FFH
FF30H Capture/compare CRCO - o 10H
control register 0 W -
FF31H Timer output control | TOC - o
register
FF32H Capture/compare CRC1 - o -
control register 1 00H
FF34H Capture/compare CRC2 - o -
control register 2
FFA0H Pull-up resistor PUO R/W| o o -
option register
FF43H Port 3 mode control PMC3 R/Ww| o o -
register

Table C-2. List of Special Function Registers (SFR)
with uPD78122/uPD78124 (contd)

Address | Special function sfr R/W | Manipulatable At
register (SFR) symbol bit units RESET
name 1 8 16
bit [bits| bits
FF50H 16-bit timer/ TMO - - 0
FF51H register 0 - -
FF52H 8-bit timer/ T™1 - o -
register: CH-1 Un-
FF54H 8-bit timer/ ™2 R - o - known
register; CH-2 : o
FF56H 8-bit timer/register | TM3 - o -
for BRG
FF5CH Prescaler mode PRMO W - o
register 0 -
FF5DH Timer control TMCO R/W - o
register 0
FF5EH Prescaler mode PRM1 W - |- ©
register 1 - 00H
FFS5FH Timer control T™MC - o]
register 1 R/W :
FF7FH Clock output meode CLOM o) o -
register
FF80H Clock-synchronized CsSIM o] o -
serial interface mode
register 00H
FF82H Serial bus interface | SBIC (o} o -
control register
FF86H Serial shift register| SIO - o] - Un-
Xnown
FFCOH Standby control STBC - o -
register
FFC4H Memory expansion MM o] (e} 00H
mode register
FFEOH Interrupt request IFOL o} o
flag register L R/W o} 00H
FFE1H Interrupt request IFOH o o
flag register H
FFE4H Interrupt mask MKOL o} o}
flag register L o
FFESH Interrupt mask MKOH o o
flag register H FFH
FFE8H Priority PROL o o
specification
flag register L o
FFE9H Priority PROH ‘ 1] o] '
specification
flag register H

Table C-2. List of Special Function Registers (SFR)
' with uPD78122/uPD78124 (contd)

Address | Special function sfr R/W | Manipulatable |At
register (SFR) symbol bit units RESET
name 1 8 16
bit |bits|bits
FFECH Interrupt handling ISMOL o o)
mode specification
flag register L To)
FFEDH Interrupt handling ISMOH o o

mode specification
flag register H

FFF4H External interrupt INTMO o] 0
mode register 0 R/W - 00H
FFF5H External interrupt INTM1 o o
mode register 1
FFF8H Interrupt status IST o o} -
register

Table C-3. Operation of Each uCOM-78K/I Instruction {(1/8)

In the table, description "addri3" in the Operand column applies
to the uPD78112., For the uPD78122 or uPD78124, change this to

read as "addri16". -

Y 3 sl Flag
3 Mnemonic Operand 3 rleck Operation -
v Ey Z AC CY
(]
r.#byte 2 2 r e byte
saddr Hbyte 3 3 (saddr) = byte
sir #byte(Notel)| 3 5 sir «— byte
T, r 2 2 r~—r
A, T 1 2 A =T
A,naddr 2 2 | A+~ (saddr)
saddr, A 2 3 (saddr) — A
A,slr 2 4§ A — sir
z MOV air A 2 5 sfr = A
H
2 A [r3] (Note2}| 1 5/6 | A ~ (FEOOH+r3) r3=40H~-FFH
@
& {r3].4 {Note 2)| 1 | 576 | (FEGOH+r3) — A r3-40H-FFH
LY
= A [HL] 1| 577 | A = (HL)
a
o CHL]. A 1| 57 | (HL) — &
-~
a 7180 _
o A,word[r1] RE 940 A (word+rl)
7{8) -
word[r1], A 4 std (word+rl) A
PSW, H#byte 3 5 PSW «— byte x X X
PSW, A 2 5 PSW «— A x X %
A,PSW 2 4 A +— PSW
A,r 1 4 AT
A,aaddr 2 4 A = (asddr)
XCH
A,afr 3 10 A+ sir
A Lr4] 1 8 A — (FEOOH+r4) r4=401-FFH
rp Hword 3 3 Tp + word
3 ssddrp,#word 4 4 (saddrp+tl){(saddrp) ~— word
L]
u
g sirp,#word 4 8 sfrp «~ word
]
& rp,rp 2 4 rp— rp
3 MoV
5 AX,ssddrp 2 6 AX = (szddrp+l)(saddrp)
b saddrp,AX 2 § | (saddrp+1)(saddrp} — AX
o - .
u; AX.sfrp 2 10 AX — stfrp
sf{rp,AX 2 9 sirp — AX

NOTE: 1.

If the STBC register is described as the operand

sfr" of a MOV instruction, this instruction becomes
a dedicated instruction which differs from that
shown in this table in the number of bytes and the
number of clocks. (See CPU control instructions.)

If "E+" is described in the operand "r3" of a MOV
instruction, the contents of the E register are
incremented by 1 after the execution of the MOV

instruction and the number of clocks becomes 6.

Table

2 a] Flag
0 [Mnemonic| Operand ¥ Clocks Operation
G & Z ACCY
A, #byte 2 2 A, CY = Atbyte X X X
saddr Hbyte 3 3 (3addr),CY ~ (aaddr)+byte X X X
str, #tbyte 4 g s1r ,CY — sfr+byte X X x
r,r 2 3 rCY-—1r + r X X X
ADD
A,ssddr 2 3 A,CY — A+(saddr) X X x
A,alr 3 7 A,CY = Atsir X X X
A[rd] 2 7 A,CY = A+(FE00H+r4) rd=40H-FFH | x % X
A, [HL] 2 | 8/10 | A, CY « A+(HL) X X %
A, #Hbyte 2 2 |A,CY = Atbyte+CY x X X
aaddr,#byte 3 3 (22addr) ,CY «— (ssddr)+byte+CY X X X
sir,#byte 4 9 s1r,CY ~ sf{r+byte+CY X x X
r,r 2 3 r,CY «— r+r+CY X X X
c | ADDC
=t A,saddr 2 3 A CY — A+(saddr)+CY X X %
4+
g A slr 3 7 |A,CY = A+sir+CY X X X
@
o,
o A [r4] 2 7 |A,CY«A+(FEOOH+r4)+CY r4=40H-FFH |Xx x X
O
0 4,[HL] 2 [810 | A,CY — A+{HL)+CY X X X
@
g A, #byte 2 2 A, CY — A—byte X x X
~
: saddr ., Hbyte 3 3 (asddr),CY ~— (aaddr)—byte X X X
ot sir,#byte 4 9 ef{r,CY — afr—=byte X X X
a
u‘c T,F 2 3 r,CY = r-r X X X
SUB
A,saddr 2 3 A,CY +~ A-(aaddr) X X X
A,sfr 3 7 ACY = A—afr X X X
A, Lr4d] 2 7 A,CY ~— A—(FEOOH+r4) ri=40H-FFH |Xx x X
A.[HL] 2 | 8/10 { A,CY — A—(HL) X X x
A,#byle 2 2 A,CY ~ A—byte-CY X X X
saddr ftbyte 3 3 {saddr),CY « (aaddr)-byte—CY X X X
sfr #byte 4 L] sfr,CY «~ sf{r-byte—CY X X %
. T, r 2 3 r,CY — r—r-CY X X X
SUBC
A,saddr 2 3 A,CY <« A=(saddr)-CY X X X
A,str 3 7 ACY »~ A-afr-CY X X X
A,Lre] 2 7 |A,CY—A-(FEOOH+r4)—CY r4=40H-FFH |X X X
A [HL] 2 1810 |A,CY «~ A—(HL)-CY X X X

A-20

C-3. Operation of Each uCOM-78K/I Instructlo (3/8)

Table
% Mnemonic Operand E ClockJ Operation Flag
& & Z ACCY
A Htbyte 2 2 A= Afbyte X
saddr Hbyte 3 3 (saddr) «~ (asddr)Abyte x
sir,#byte [] g sfr — 3frAbyte %
r,r 2 3 r+—rAr X
AND
A,naddr 2 3 A+~ AACaaddr2 X
A,sir a| 7 A= AAstT X
alrd] 2 | "7 |A = AA(FECOH+rd) r4=40H-FFH| x
A.[HL] 2 8710 |A& — AA(HL) %
A Hbyle 2 2 A+~ AVbyte X
saddr Hbyte 3 3 {(saddr) — (ssddr)Vbyte x
g sir ftbyte 4 9 pfr < sirVbyte X
:'E T, T 2 3 r «-=rVr x
5 |OR
& A,naddr 2 3 A= AV(saddr) X
2 A,sfr 3 7 A= AVslr x
% A [r4] 2 7 A — AV{(FEOOHtr4) rd=40R-FFH| X
-E 4.[HL] 2 (8,10 | A — AV (HL) x
j A ftbyte ‘2 2 A — A¥byte X
f saddr #byte 3. 3 (eaddr) = (saddr)¥bytie X
s{ir #byte 4 9 tafr «— afribyte P3
r.r 2 3 P T¥r x
XOR
A,ssddr 2 3 A+~ AN (saddr) X
A,sdlr 3 7 A= A¥sfr x
A[r4a] 2 7 A — A¥ (FEQOH+r4) rd=40H~FFH] X
A [HL] 2 | 8/10 | A = A% (HL) P
A, Hbyte 2 2 A — byte X X X
saddr.fibyte 3 3 {aaddr) = byte X X X
sfr , #byte 4 7 sfr — byte X X X
r,r 2 3 r = r X X X
CMP
A,saddr 2 3 A - (saddr) X X X
A,str 3 7 A — slr X X X
A [r4] 2 ? ‘A ~ (FEDOH+rd) r4=40H~FFH] X X X
A, [HL] 2 |8s10] A — (HL) X X X

Table

g‘ g P
0 Mnemonic Operand o Clock Operation
] @ Z ACCY
AX F#word 3 4 AX,CY ~ AX+word X X X
AX,rp 2 6 A,CY - AX+rp X X X
§ | apow
g AX,saddrp 2 7 AX,CY += AX+ (saddrp+1)(saddrp) X X X
P
P AX, e 3 | 13 | AX,CY - AXtastfrp x X %
[}
© AX . #word 3 4 AX,CY — AX—~word X X X
v
- ;
3 AX,rp 2 [AX,CY == AX-~71p X X %
g | SUBW
5 AX,saddrp 2 7 AX,CY — AX—(saddrp+1)(naddrp) X X X
-
& AX,sfrp 3| 13 |AX,CY =~ AX—sfrp X X X
)
a AX H#word 3 3 AX — word X X X
: .
bt AX,rp 4 5 AX — rp X X X
CMPW
AX ,ssddrp 2 6 AX — (seddrp+i){aaddrp) x. %X X
AX ,sfrp 3 12 AX — sfrp X X X
Z, | moLow | r 2 | 43 | AX(low 16 bits),r(high16bits)—AXXr
T
33 |p1vuw| 1 2 | 71 | AXtquo), rirem)eaX<r
4 r 1 2 re—r+i X X
2 {INC
g paddr 2 2 (aaddr) = {ssddry+1 X X
3]
2 r 1 2 r e r—1 X X
~ | DEC
+ saddr 2 2 {(saddr) = {(saddr}-—1 X X
@
E INCW | rp 1 3 rp ~ rpt+1l
u
5 | DECW | rp 1 3 rp~ rp—1
ROR r,n 2 |3+2n [(CY , ry=—rg.Tp-1=—rm) X nT n=0-7 x
ROL T,h 2 [3+2n | (CY ,ro==r7.Tpe1=Fpt X nT n=0-7 X
RORC [r,n 2 | 342n | (CY=rg,.r7=—CY,ru-yj=rp)txnT n=0-7 x
ROLC r,n 2 {3420 [{CY~rq,rg~CY,rps1=rm)%nT n=0=~7 X
8 | SHR r,u 2 j342n | (CY=rg,r7=0,1py=rp)xnT a=0-7| x 0 X
T
E, SHL r,n 2 1342n 4 (CY*rq,r0=0,1qu=rp)xnT n=0-7§Xx 0 X
E SHRW |rp.n 2 | 343n | (CY<rpg,rpjs=0,rppeq=rpp)X 0T n=0-7 X 0 X
-
& | SELW [rp,n 2 | 3+3n | (CYrpy5,tpg=0, rPmb1 = rpp)XnT n=0-7 X 0 X
Ay-g—{FEO0O0+r4)3.p,
ROR4 | [r4] 2 22 | (FEOO+rd4)7.4+Az3.0,
(FEOO+r4) 3.0+ (FEOO+rd) -4
Az-g—(FEOO+rd)ay,
ROL4 | [rd] 2 23 | (FE0O+t4)3.0-A1-0,
(FEO(H“I")',!..;"—(FE00+1’4)3-0

* guo: guotient
rem: remainder
nT : n times

Table C-3. Operation of Each uCOM-78K/I Instruction (5/8)

=% J g sl . Flag

3 Mnemoni Operand + Clock Operation

5 Y Z ACCY

(&

o) Decimal Adjust Aceumulster

a | ADJBA ! 8 sfter Addition| X X X

[= Decimel Adjuast Accumulator

Q% |ADIBS ! 8 sfter Subtract| X X ¥
CY,snddr.bit 3 (1 CY = (saddr,bit) X
CY,sfr.bit 3 7 CY — str.bit x
CY.A. b1t 2 5 |CY — a.bit x
CY.X.bit 2] 5 |CY =~ X.,bit x
CY.PSW. bit 2 5 CY — PSW.bit x

MOV1
saddr.bit,CY 3 8 (ssddr.bit) — CY
sir.bit,CY 3 12 sfr.bit = CY
A.bit,CY 2 8 A.bit — CY
X.blt, CY 2 8 X.bit — CY
PSW.bit ,CY 2 7 PSW.bit - CY X X
CY.saddr.bit 3 5 CY — CY A (saddr.bit) T x

5 CY,/ssddr.bit 3 5 |CY ~ CY A (5addr.bit) X

el

- CY,fr.bit 3| 7 [CY e~ CYA sir.bit x

-

3 ——

E— CY./sir.bit 3 7 CY «~ CY A sir.bit X

o

3 CY.,A.bit 2 5 |CY~CY A a.bit x

o | ANDL. p——

o CY./A.bit 2 [CY — CY A AL bit x
CY.X.bit 2 5 CY — CY A X.bit X
CY,/X.bit 2 5 CY = CY A X.bit x
CY,PSW.bit 2 5 CY — CY A PSW, bit b
CY,/PSW.bit 2 5 CY — CY A PSW.bi1t x
CY,saddr.bit 3 5 CY - CY V (saddr.bit) X
CY.”saddr.bit 3 5 CY — CY v (saddr.bit) x
CY,sfr.bit k 7 CY — CY v sfr.bit X
CY,/7sfr.bit 3 7 CY — CY V afr.hit b4
CY.A.bit 2 5 CY — CY WV A.bit X

OR1
CY,”A.bit 2 5 CY ~ CY Vv A.bit ®
CY,X.bit 2 S CY — CY v X.bit x
CY,./X.bit] 5 CY — CY v X.bit x
CY,PSW.bit 2 5 CY — CY v PSW.bit b
CY./PSW.bit 2 5 CY — CY V PSW.bit ®

Table C-3. Operation of
g' $ Flag
C Mnemonid Operand + Clocks Operation
3 2 Z ACCY
CY,saddr, bit 3 5 CY <« CY % (saddr,bit) x
CY,nfr.bit 3 7 CY — CY % sfr.bit)
XOR1 [CY.A.bit 2 5 CY — CY % A.bit X
CY.X.blt 2 5 CY ~ CY ¥ X.bit x
CY.,PSW.bit 2 5 CY — CY % PSW.bit x
saddr.bit 2| 3 [(eaddr.bie) — 3
afr.bit 3 14 sfr.blit ™+ 1
SET1 {A.bit 2 6 Ablt «— 1
“ X.bit 2 6§ |X.bit -1
2
< PSW.bit 2 5 PSW.bit — 1 X X X
—
3 saddr. bit 2 3 |{saddr.bit) «~ 0
-
5 sfr.bit 3| 10 |sfr.bit — 0
=
H |CLR1 [aA.bit 2 6 |Aa.bit—0
[2+]
X.bit 2 6 X.bit = 0
PSW.Dhit 2 5 PSW.bit — 0 X X %
saddr.bit 3 6 (saddr.bjt) — {(saddr.bit)
sfr.bit 3 10 sfr.blt — afr.bijt
NOT1 la.bit 2 6 A.bit «— A, b1t
X.bit 2 6 |X.bit —X.bit
PSW.bit 2 5 PSW.bit + PSW.bit X X X
SET1 |CY 1 2 CY — 1 1
CLR1 |CY 1 2 CY - 0 0
NOT1 {CY 1 2 CY — CY %
CALL taddri3 3 g (SP=1)(8P-2) + PC+3,PC +~ laddri3,
SP ~— Sp-2
e | CALLF {1addr1 9 g (SP~1)(SP—2) « PC+2,PCyg~1;+—01,
; PCig-p < inddrll,SP « 8P-2
Fu - - —— -
8 | caLLT |(aaars) s | 1g |CSP-1)(SP-2) = PCHi,PCy
Reid {addr5+1) ,PCy ~ {addr5),SP — SpP-2
=)
= lrer L] s [PCu = (SPY.PCy — (SP4+1),8P
o SP+2 :
RETI v | 1o |PSL = (SP).PCy « (SP+1),PSW« R R R
(SP+2)},8P « SP+3 '

Each uCOM-78K/I Instruction (7/8)

Table C-3. Operation of
o 3 sl Flag
3 Mnemonid Operand o Klock Operation
X) Z ACCY
rp 1 7 (SP-13=—rpy.(8P-2)—rp.8P—5P-2
o | PUSH
° | pSW 1 3 (SP-1) = PSW,§P+ §P-1
FE] 5
- rp 1 8 rpL—(SP), rpy— (SP+1) 5P« SP+2
2 | POP
" PSW 1] PSW— (SP),SP—SP+} R R R
[}
= SP.#byte 3 5 SP — byte
A
g MOV SP.A 2. 5 SP — A
]
“ A.SP 2 "4 |a-sP
) ‘addrla 3 5 PC =— laddri3
)
A
Eag BR Tp 2 5 PCy = rpu.PCL = rpL
cod
ek $addr13 2 4 |PC +~ Saddris
BC
$addri13 2 [4(2) [PC — Saddr13 if CY=1
BL
BNC '
$addri13 2]4(2) |PC ~ $addr13 1f CY=0
BNL
BZ
$addr13 2 14(2) |PC ~ $addrl3 if 2=1
BE
- | BNZ
v $3ddr13 12 |4(2) |PC == $adér13 if Z=0
d | BNE .
o
. saddr.bit,.Saddr13 3 [6{4) |PC ~ Saddrid i{ (aaddr.bjit)=1
T
5 sfr.bit Saddr13 [4 [8(7) [PC « $addri3 if sf{r.bit=1
-~
Y BT A.bit,S5addr13 3 |7(5) [PC « $addr13 if A.bit—1
o
§ X.bit,Saddr13 3 |7(5) |PC + %sddrl3 §if X.bitwl
PSW.bit,$2¢dr13 | 3 |7(5) [PC «— Saddri3 if PSW.biti=1
saddr,bit ,$addrld |4 |7(5) |PC — Saddr13 i! (aaddr.bit)=0
sTr.bit,$addr13 [4 [9(7) {PC — Saddri3 Lf sfr.bitwd
BF A.bit, $addri3. 3 {7(5) |PC « Saddrl3 if A.bjtmd
X.bit,$addr13 8 [7(5) JPC =~ 3sddri3 i{ X.bit=0
PSW.bit ,$addrl13 |3 j7(5) [PC = $addr13 if PSW.bijte0

Table C-3. Operation of Each uCOM-78K/I Instruction
a a J . Flag
0 [Mnemoni Operand & [Clock Operation
& & Z ACCY

PC ~— & it ddr.bit)=1
o saddr.bit,5addr13 | 4 |8(5) .ddrlat;nen(::se: (ﬁ?uu.an)
Y PC — Saddri3 if sfr.bit=]
E afr.blt, $addri3 | 4 [13(7) then reset sfr.bit
PC « $addri3 §if A.bjt=]
M BTCLR [A.blt,Saddr13 3 |scs) VM hen reset ALbit
—
©) PC — ¥3dériJ if X.bit=1
§ X.bit Saddrila 3 |9(5) - TR P;\h]e: reset X.bit
) - 3addrid i V.bilml
bt PSW.bit, Saddr13 | 3 [8(5) then reset PSW.bit | X X X
o] - — - 9 -—
£ r2,$addrld 2 Isq3y e r2-~1J,thén PC = $addrld if
0 r27 0
v DBNZ saddr — saddr—1
saddr 5addrid 3 [604) then PC — $addr13 i1 seddr v 0

MoV STBC ,#byte 4 12 STBC == byte

-
2 | sEL RBn 2 2 RBS1-0 =~ n n~0-3
+J
§ NOP 1 2 No Operation
2 | El 1 2 1E =1 (Enable lInterrupt)
4]
D1 1 2 IE =0 (Disable Interrupt)

APP C-2. Instruction Codes

(1) Legend of symbols in "Instruction Code" column

rl r2

R: Ri Roe R reg Re reg
reg
R+ R: Ru 0 A 0 c
0 0 o0 {RO|X 1 B 1 B
o 1 |R1}a
¢ 1 o0 R2|C
0 1 1|R3|B
1 0 0 |R4|E 3 r
1 0 1 |RS|D R Ro | reg R,
1 1 0 |[R6| L 0 _0 E R: reg
1 1 1 |R?7|H 0 1 E+ R.
10 D 0
1
rp
P1 Po
P: P; reg-pair
Py Ps
0 ¢ | RPO|AX
0 1 | RP1{BC
1 -0 | RP2{DE
1 1 | RP3|HL
Bn Immediate data corresponding to "bit"
Nn Immediate data corresponding to "n"
Data 8-bit immediate data corresponding to 'byte"

Low/High Byte
Saddr-offset

Sfr-offset

.
-
-
-
-
-
-
.
.
-

Low/High offset:

Low/High Addr.

16-bit immediate data corresponding to "word"
Low-order 8-bit offset data of the 16-bit
address corresponding to "saddr"

Low-order 8-bit offset data of the 16-bit
address corresponding to "sfr" (special

function register)
16-bit of fset data corresponding to "word"

in indexed addressing
16-bit immediate data corresponding to
"addri13"

A-27

jdisp

fa

ta

Note:

Signed twos complement data (8 bits) of
relative address distance between the first
address of the next instruction and the
branch destination address

Low-order 1% bits of the immediate data
corresponding to "addr11"

Low-order 5 bits of the immediate data
corresponding to "addr5 x 1/2"

If the 1st and 2nd operands in the Operand field of
an instruction are both registers or register pairs,
the instruction code becomes as follows:

Of the byte specifying registers, the high-order 4
bits of the byte become a code specifying the 2nd
operand and the low-order 4 bits becomes a code
specifying the 1st operand.

Example: MOV r,r
Instruction code

¢o016 01060 0 ReRsRs 0 R:RiRe

To specify A register as the st operand and
L register as the 2nd operand, describe the
MOV instruction as follows:

MOV A, L

The instruction code for this instruction
becomes as follows:

Instruction code

0010 0100 0110 0001

Code épecifying A register

Code specifying L register

Table C-4, uCOM-78K/1 Instruction Codes (1/7)

Instruction Code

=N
8 [Mnemonic Operand
] B1l B2 B3 B4
5]
r,#byte 1 R:RiRo|~ Data -
saddr #Hbyte 1 01 0 | Saddr-offaet — Data
ltr,#b&tg 0 011 |+ Sfir-offset — Data
r,r 0 0100 |0 ReRsRy 0 RiRiRe
A, T 1 R:RiRe
A,saddr 0 0000 |~ Ssddr-offset —
1addr . A 0.0010 |+ Syddr-offset —
A,slr 1 0000 |~ Sfr-offset —
) a1, A 1 0010 = Sfr-offset —
a |Mov
g A,[r3] 1 11RRe
v
E {r3).a 1 10 RRe
m
M
o A [HL] 1 101
o [HL]. A 1 6101
8 -
© A.word{r1] 0 1010 |DORsl 0000 [Low offaet |High offset
word[r1],A 0 1010 (10Rs1 0000 [Low offset |High offset
PSW,#byte 0 1011 4{11131-} 111¢% Dats
PSW,A 1 00101111 11160
A,PSW 1 0000¢ (1111 1110
A,r 1 RzR|Rn‘
: A,saddr 0 000 1 |« Saddr-offset «
XCH
: A,slr 0 6001 (0010 000_1 Sfr-offset
Alred’ 1 1 Rell
rp,#word 0 0 P:Pi0 |— Low Byte — | High Byte
: saddrp,#word 0 1100 [~ Saddr-offset — | Low Byte High Byte
Y4
o
g sirp,#word ¢} 011 — Str-cffset —~ | Low Byte High Byte
H -
& TP.rP D 0100 {0 PsPsO 1 P;P,0
s [mMovw
& AX,saddrp 1 100 t— Saddr-offset —
": saddrp,AX 1 1010 |~ Saddr-offset —
Kel
> AX,sfrp 1 0001 b Str-offset —
sfrp,AX 1 0011 +~— Sfr-offset —

Table C-4. uCOM-78K/I Instruction Codes (2/

o, - Instruction Code
3 [Mnemonic Operand
G Bl B2 B2 B4
A Hbyte 01 - Dats -~
anddr, #byte ¢ 1 — Saddr-offaet — Data
afr,#byte) 0110 1000 |Sfr-cffset Dats
ror ¢ 1 0 ReRsRs 0 RzRiRo
ADD
A,saddr I 1 +— Saddr-~off{set —
A,sfr ¢ 0 1001 1000 [Sfr-cffset
A 4] 1 0 01 1R 1000
A [HL] 1 0 To101 1000
A, Hbyte 0 1 — Data —
saddr,#byte ‘01 e Saddr-cifset — Data
si{r #byte 00 0110 1001 [Sfr-offset Data
o
3 Tor 01 0 ReRsR« 0 ReRiFo
H |ADDC
3 A,aaddr 1 1 « Saddr—of{aset —
o,
© A,sfr 0 0 1001 21001 |Sir-offset
3}
'g A [r4] 10 011R 1001
E
5 A, [HL] 10 01011001
»{
: A #byte 0 1 -— Data — -
)
E saddr,H#byte (12 | +— Saddr-offret — Datn
ot
@© sir, #byte 0 0 6110 1010 |Sfr-offiset Data
r,r 01 ¢ ReRsRy 0 R:RiRe
SUB
A,saddr 1 1 o gaddr-offset —
A,sir 00 1001 1010 [Sfr-efiset
A,[r4] 10 011R1010
A, [HL] 10 6101 1010
A,H#byte 0 1 - Data —
saddr ,frbyte 0 1 o saddr-offset — Data
sir1 ,#byte -0 0110 10311 |Sfr-offset Data
r,r 0 1 0 RaRsR4 0 ReRyRe
SUBC -
A,saddr 11 — paddr-offaet —
A,alr 0 0 1001 1011 |Str-offset
AJra] 10 ©1IR 1011
A[HL] 10 0101 1011

Table C-4. uCOM-78K/I Instruction Codes (3/7]
g‘ Instruction Code
O [Mnemonic Operand
3_.; B1 B2 B3 B4
A.Bbyte 10610 1 bt Dsts -
aaddr #Hbyte 0110 1 — Saddr~offaet — Dats
sfir,#ibyte 0000 @ 01310 1100]|8fifr-cifaet Dasta
T.r 1000 1 ¢ ReRsR4 0 RaRiRo
AND
A,saddr 1001 1 - Saddr-offset —
Aalr 0000 O 1001 1100([8Sfr-offset
A re] 0001 0 0171 R 1100
A,[HL] 0001 0 0101 1100
A, Bbyte 1010 -— Data —
saddr Hbyte 6110 1 — Saddr~offaet — Data
sir,#byte 0000 0 0110 1110 |8Sf{r-cff{set - Dats
= r,r 1000 1 0 ReRsRy 0 RaRBo
[+]
.« |OR
4 A,ssddr 1001 1 — Saddr-offaet —
M
g. Aair 00060 B 1.001 1110|S{r-offset
y Afr4] 0001 © 011R 1110
o]
E A,.[HL] 0001 O 0101 1110
b A dibyte 10190 1 - Dats -
1%
L
" saddr ,#byte 0110 1 o Saddr-oifset — Date
o -
a sfr. dbyte 0000 O 0110 1101 [Sfr-offsel Data
[-»]
t,r. 1000 1 0 RoRsRe 0 ReRyRo
XOR
A,saddr 1001 1 — Saddr—of{aet —
A,alr 0000 O 1001 1101 |S8S{r-~offset
A,[rd] 0001 0O 01 1R 1101
A, [HL] o001 O 0101 2101
A,#byte 10140 - Dats -
saddr f#byte 0110 1 + Saddr—offsel — Data
sir H#byte 000D © 0110 21131 |{Sfr-cffaet Data
r.r 1000 1 0 ReRsRy 0. R:R Re
cMP -
A,saddr 1001 »— Saddr-ofiset —
A,alr 0000 O 1001 1111 |8Sfr~offset
AJLr4] 0001 @ C11R1111
A,[HL] o001 0O 0101 1111

Table C-4. uCOM-78K/I Instruction Codes (4/7)
g. Instruction Code
O {Mnemonic Operand
] B1 B2 B3 B4
AX ,#word 0010 1101}« lowByte —| High Byte
AX, TP 1000 1000[0000 1 PPs0
§ |ADDW
o AX,saddrp 0001 116061 [~ Saddr-offset —
]
oy AX . sfrp 0000 000100601 1101 [Sir-offaset
Qu
© AX ,#word 0010 t110|=~— |LowByte ~—~| High Byte
U
o AX.rp 1000 1010[0000 1 Pypyo0
£ |susw : :
-5 AX,wnsddrp 0001 1131 0|~ Saddr-offaet —
ot
2 AX,atrp 0000 0001716001 1113 0|8tr-cffnet
E AX #tword 0010 1111 |+~ LowByte ~| High Byte
1
2 AX,rp 1000 1111/0000 1PP0
CMPW =
AX , saddrp 0001 1111 |+ Seddr-offset —
AX,sfrp 0000 06010001 111 1|Sfr-offset
Y, [MULUW] r 0000 0103{000GD0 0RRiRo
e
L
-
4 e
E:,'.E,Dl'vuwr 0000 0:01|0001 1RRRe
2
5 T 1100 0 RxR:Ro
E (INC
2 saddr 00320 0110 |+ Saddr~offset —~
o
A r 1100 1 RRRe
S |pEC
5 aaddr 0010 0111+~ Saddr-cfiset —
B
O JINCW jrp 0100 01P,P
Q
S IpECW | rp 0100 11PPe
ROR r,n 0011 0000(01 NNy NeRsRiRo
ROL r.n 0001 {01 NN NeReRyRo
RORC |[r,n 000000 NN MRR R
3 ROLC r,h 0001 00 N:N| NoR:Riﬁo
]
¥ | SHR r,n 0000 |1 8 NNy MNRiR;Re
[+
E SHL |[r.n 8001]{10 N:N, NoReRyRe
-~
& |SHRW | rp.n 000011 1NN NP:P0
SHLW rp,n 0 001 1 1N1N| NP:P]O
ROR4 |[r4a] 0000 0101}1000 °10R1
ROL4 |[r4] 00060 01011001 10R!1
™
2 |ADJBA 0000 1110
]
O | ADJBS 0000 1111

A-32

Table C-4, uCOM-78K/I Instruction Codes (5/7

o Instruction Code
O |Mnemonic Operand
b B1 B2 B3 B4
CY,saddr.bit 0000 1} "0 00 0 0 ByB)Bo[Saddr-off{set
CY.sfr.bit 1 1 BiBiBo| STr-ofiset
CY.A.b'H’ 0 1 BaBiBe
CY.X.bit 0 0 ByBiBe
CY,PSW.bit 0 0 B1B,Bo
MOV1
saddr.bit,CY 4 [1 0 ByB,BojSaddr-offsel
stfr.bit, CY 1 1 B:ByBo| S{r-offaet
A.bit , CY 0 1 B:B,Be
X.vit,CY 0 @ B:BBo
PSW.bit,CY 4] 0 B:2ByBe
CY,saddr.bit 0000 1 0010 0 ByByBo[Saddr=offaet
CY,/saddr.bit ({1} 1 0 ByB;BpjSaddr-offset
CY,sfr.bit o0 0 1 B;B;Be| Sfr—offaet
CY,/sf{r.bit 0q 1 1 ByByBp| Sfr-offset
CY,A.bit 0 0010 1B:BBo
AND1 -
CY./A. bit LU (] 1 1 B:ByBe
g CY,X.bit 0010 0B:BiBe
:‘: ' CY./X.bit 0011 0BiBibBo
4 CY,PSW.bit 0 0010 0 B:BBo
g CY,/PSW.bit ¢ 1] 1 0 B:BBo
E CY,saddr.bit 0000 1 0100 0 BB BolSaddr-offset
CY,/saddr.bit 0101 0 B:ByBolSaddr-offset
CY,sfr.bit . [V} 0 1 ByB;Bo| Sfir-offaet
CY./sfr.bit 01 1 3 BeB1Bo| Sir—oifaet
CY,A.bit 4] 01 ¢ 1 B:ByBe
OR1
CY.Z7A.bit 0191 1 B:BiBe
CY ,X.bit 0100 0 BiBiBo
CY,/X.bit 01 1 0 B:B)yBe
CY,PSW.bit 0 0100 0 BaBiBo
CY,/PSW.bit 0 0101 0BrBiBo
CY,saddr.bit co0o00 1 01 0 O B:ByBo|Saddr—of{set
CY,sfr.bit 1 .1 BaBiBe| Sir—offset
XCOR1 CY,A.bit] 1 B1B:iBo
| CY,X.bit 0 0 B:BiBo
CY.PSW.bit 1 G B:BiBo

Table C-4. uCOM-78K/I Instruction Codes (6/
o Instruction Code
8 |lunemeonic Operand —
1 B1 B2 B3 B4
(&)
saddr.bit 1011 0 ByB/Bo|~ Saddr=offsel —
sfr.bit 0000 000 1000 3 BiB,Bo| Str-offsét
SET1 |a.bit 0011 1.B1B,Bo
X.bit 0011 0 BiBBo
PSW.bit 0010 0 B:B;Be
saddr. bit 1010 0 ByEyBo|— Saddr-offaset —
sfr.bit 0000 1000 (1001 1 ByBBe| Sfr-offset
o
2 lcLrr |a.bit 0011 1 B3B,Be
+
,‘;’ X.bil 611 .0 BsB,Bo
[«
g PSW,bit .0 01¢ 0 BsB,Bo
d
= saddr.bit 0000 3100C 0111 0ByByBo|Saddr—offset
FE)
a afr.bit 000 1 B;B;Bo] Sir-offaset
NOT1 [A.bit 0011 [1 BB, Be
X.bit 0011 0 BsB,Beo
PSW.bit 0010 0 B:B;Be
SET1 |[CY 0100 00D
CLR1 |CY 6100 0000 .
NOT! ey 0100 0061606
CALL |'addri3 0e10 000 [+ Low Addr, — | High Addr.
s [s
‘:; CALLF | 'addril 1001 0 «— fa —
i)
& [CALLT |[addrs] 111+ ta -
~—
% RET 01061 0110
o
. |RETI 01061 0111
rp 0011 1 P)Po
‘g |PUSH
2 PSW 0100 10601
p
= rp ¢C011 ©1 PPe
o, [POP
e PSW 0100 1000
[:]
=
P 1SP.#byte 00310 1011|1111 1100 Data
4]
3 |mov SP.A 0001 00101111 1100
w
A.SP 0001 0CO0CGO (1111 1100¢0

Table C-4. uCOM-78K/I Instruction Codes (7
g- Instruction Cede
D |unemonic Operand
& B1 B2 B3 B4
| 'addrl3 0010 1 10QO0|+ LowAddr. —| High Addr,
gal .
g .
000 0101]0
gg BR rp Y 100 Y FePi0
8]
£ $addrld 6001 0100~ fdisp -
BC
Saddr13 1000 001 1| jdisp o
BL
BNC .
$addri1d 0010f+— jdisp -
BNL
BZ
$addrld go01]|~ jdisp -
BE :
BNZ
Saddrid 000D0D|— Jdisp —
BNE
saddr,bit,$addrlB 0111 0 B;B,Bod ~— Saddr—offset - jdisp
sfr.bit,$addr13)/ 0000 1000|1011 1 BsByBof Sfr-offset jdisp
‘g BT A.blt, Saddrl3 0ol 1 B:B;Be jdisp
q -
a X.blt Saddri13 ¢t 011 0 ByB;Bo jdiap
g PSW.bit,$sddr1d 0010 0 B:B; By jdisp
2
"3 saddr.bitl,Saddri3 0000 1000]10190 0 B:B B Saddr-oeffset jdisp
B
2 afr.bit,$sddrl3 1000 1 BsB Bo] Sir-offset jdisp
£ :
@ | BF A.bit,$addr13 0011 1 B:BiBd jdisp
X.btt, 5addrl3 090111 0 B:B) B jdisp
PSW.bit $addrl3 co010 0 B:B, Bo jdisp
ssddr.bit,5addris3 ¢go0oo00 1000|1101 _0 BaB | Bo| Saddr-off{set jdiap
sfir.bit,$addrl3 1000 1 BaByBe] Sfir-offset jdisp
BTCLR| A.bit,$addrl3 001 1 B:B, Bo jdisp
X.bit,$addrl3 0011 0 B:B, By jdisp
PSW.bit,$5addrl3 G010 0 E:B, By jdisp
r2,8addr13 0011 001 Ao -~ jdisp —
DBNZ .
saddr . $addrld 0011 101 1|+ Saddr-offset — }diap
MOV STBC ,fbyte poOCO0 106001]1100-0000 Data Data
—
SSEL RBn 0000 0101]1010 10NN
o
g | NOP 0000 0000
o
5 | El 0100 1011
i
3]
DI c10¢0 101490

APPENDIX D.

MAXIMUM PERFORMANCE CHARACTERISTIC:S

(1) Maximum performance characteristics of Assembler

Item

Limit

Effective

symbol length

6 characters

Number of

characters per line

99 characters

Number of

code segments per type

1 segment

Number of

absolute segments

10 segments

Number of

macrodefinitions

10 definitions

(2) Maximum performance characteristics of Linker

Item

Limit

Number of

input modules files

100 files

Number of

different segment names

255 seaments

Number of

absolute segments

100 segments

(3) Maximum performance characteristics of Locater

Ttem

Limit

Number of

per input

relocatable segments

module

256 segments

(4) Restrictions on number of symbols

No. of local symbols

No. of PUBLIC symbols

x No. of modules

Assembler Approx. 1,800 symbols | 256 symbols

Linker 1,800 symbols Approx. 2,000 symbols
¥ No. of modules

Locater 1,800 symbols

Approx. 2,000 symbols

INDEX

absolute assembler 1-6

absolute segment 2-3

absolute term 2-43

actual parameter 3-70, 5-4

ADDRESS {symbol attribute) 2-15
ADDRESS term 2-46

alphabetic characters 2-10

area reservation directives 3-1, 3-36
arithmetic operators 2-26 '
assembler 1-1

assembler option{s) 2-2, 6-1

assembly language 1-1

assembly list control instructions 4-5
assemly list file 1-11

assembly termination directive 3-1, 3-79

automatic branch instruction selection directive 3-1,

backward reference 2-51, 3-59
binary constant 2-18

binary number 2-18

BIT (symbol attribute} 2-15
bit address 3-32

bit address map 3-33

bit segment 2-3

BIT term 2-46

BR directive 3-57

BSEG directive 3-16

Byte separating operators 2-40

CALLTO (relocation attribute) 3-6

character constants 2-18

character set 2-10

code segment 2-3

Comment field 2-22

conditional assembly control instructions 4-16
conditional assembly function 1-16
conditions for size of operand value 2-50
conditions for address range of operand value
constants 2-17

control instructions 2-2, 4-1

conventions of symbol description 2-14

CSEG directive 3-5

data segment 2-3

DB directive 3-37

DBIT directive 3-44

decimal constant 2-18

decimal number 2-18

default segment name 3-7, 3-12, 3-17, 3-21
directives 3-1

DS directive 3-42

DSEG directive 3-11

DW directive 3-39

I-1

2-51

3-56

EJECT control instruction 4-6

ELSE control instruction 4-17
ELSEIF control instruction 4-%7

END directive 3-80

ENDIF control instruction 4-17

ENDM directive 3-77

ENDS directive 3-24

EQU directive 2-2, 3-27

EXITM directive 3-73

expressions 2-21, 2-24

EXTBIT directive 2-2, 3-50 . ‘
external definition declaration 3-46
external reference declaration 3-46
external reference term 2-44

EXTRN directive 3-48

FIXED (relocation attributes) 3-6
formal parameter 3-62, 5-4
forward reference 2-51, 3-59

general-purpose register pairs 2-19
general-purpose registers 2-19
global symbols 5-7

hexadecimal constant 2-18
hexadecimal number 2-18

HEX-format object module file 1-13
HIGH operator 2-40

IF control instruction 4-17
INCLUDE control instruction 4-2
instruction codes A-27
instruction set (uCOM-78K/I) A-7
IRP directive 3-70

IRP-ENDM block 3-70

label(s) 2-13, 2-21

line 2-9

linkage directives 3-1, 3-46
linker 1-12

link list file 1-12

link module file 1-12

LIST control instruction 4-10
list of directives A-4

list of reserved words A-1
LOCAL directive 3-64

local symbols 1-14, 5-3
locater 1-13

locate 1list file 1-13
logical operators 2-30
lowerercase letter 2-10

LOW operator 2-40

machine language 1-1

macro 5-1

macro body 5-3

macro directives 3-1, 3-61
macro function 1-16

macro name 2-13, 5-4

" macro reference 5-4

macrodefinition 5-3

MACRO directive 3-62

macroexpansion 5-5

main routine 2-7

maximum performance characteristics
(assembler package) 1-15, A-34

memory allocation to segments 3-4

memory initialization directives 3-1, 3-36

Mnemonic field 2-15

mnemonic instruction 2-15

modular programming 1-6

module 1-6

module body 2-3

module header 2

module name 2-1

module tail 2-3

-2
3

name({s) 2-13, 2-21

NAME directive 2-2, 3-54
NOLIST control instruction 4-8
NUMBER (symbol attribute) 2-15
NUMBER term 2-46

numeric characters 2-10
numeric constants "2-17

numeric constant types 2-18

object module file 1-10

octal constant 2-18

octal number 2-18

operand attributes of instructions 2-53
operand attributes of directives 2-55
operands 2-21

Operand field 2-16

Operand representation formats 3-28, A-8
operators 2-24

optimization 3-57

optimization conditions of BR directive 3-59
optimize function 1-16

order of precedence of operators 2-24

ORG directive 3-20
other operands 2-41

PUBLIC directive 2-2, 3-52
PUBLIC symbols 1-14

register names 2-19

relatical operators 2-32
relocatable assembler 1-6
relocatable term 2-43

relocation attributes 2-43
relocation of absolute segment 3-20
relocation of bit segment 3-16

REPT directive 3-67

REPT-ENDM block 3-67

RESET contreol instruction 4-24
restriction on number of symbols 1-14, A-36

I-3

same named segment 3-7, 3-13

segment 2-3

segment definition directives 3-1, 3-3
segment name 2-3

SET control instruction 4-24

SET directive 3-34

shift operators 2-38 .
short direct addressing area 3-12, 3-17, 6-2
size of source module file 1-14

source module 1-10, 2-1

source module file 1-10

gsource program 2-1

special characters 2-11, 2-20

special function registers 2-19, A-12
stack segment 3-3

statement 2-9

subroutine 2-8, 5-1

SUBTITLE contrecl instruction 4-12
SUBTITLE section 4-12

switch name 4-17, 4-24

symbol attributes 2-15

symbol definition directives 3-1, 3-26
Symbol field 2-12

symbol table file 1-13

symbol types 2-13

Types of operators 2-24

Types of relocation attributes 2-43
Types of symbol attributes 2-46

I-4

ok
Tl

EEU—-1204
August 1988 P
. Printed in Japan

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 What is a relocatable assembler?

	1.2 Functional Outline of Assembler Package
	1.2.1 Creation of source module file with editor
	1.2.2 Assembler
	1.2.3 Linker
	1.2.4 Locater

	1.3 Reminders Before Program Development
	1.3.1 Size of source module file
	1.3.2 Number of files that can be input to Linker
	1.3.3 Restriction on number of symbols
	1.3.4 Maximum performance characteristics of assembler package

	1.4 Features of Assembler Package

	CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS
	2.1 Basic Configuration of Source Program
	2.1.1 Module header
	2.1.2 Module body
	2.1.3 Module tail
	2.1.4 Overall configuration of source program
	2.1.5 Description example of source program

	2.2 Description Format of Source Program
	2.2.1 Configuration of statement
	2.2.2 Character set
	2.2.3 Fields of statement

	2.3 Expressions and Operators
	2.3.1 Functions of operators
	2.3.2 Restrictions on Operations

	2.4 Characteristics of Operands
	2.4.1 Size and address range of operand value
	2.4.2 Symbol attributes and relocation attributes of operands

	CHAPTER 3 DIRECTIVES
	3.1 Overview of Directives
	3.2 Directives for Segment Definition
	(1) CSEG
	(2) DSEG
	(3) BSEG
	(4) ORG
	(5) ENDS

	3.3 Directives for Symbol Definition
	(1) EQU
	(2) SET

	3.4 Directives for Memory Initialization and Area Reservation
	(1) DB
	(2) DW
	(3) DS
	(4) DBIT

	3.5 Directives for Linkage
	(1) EXTRN
	(2) EXTBIT
	(3) PUBLIC
	(4) NAME

	3.6 Directive for Automatic Selection of BR Instruction
	(1) BR

	3.7 Macro Directives
	(1) MACRO
	(2) LOCAL
	(3) REPT
	(4) IRP
	(5) EXITM
	(6) ENDM

	3.8 Directive for Assembly Termination
	(1) END

	CHAPTER 4 CONTROL INSTRUCTIONS
	4.1 Overview of Control Instructions
	4.2 INCLUDE Control Instruction
	(1)INCLUDE

	4.3 Assembly List Control Instructions
	(1) EJECT
	(2) NOLIST
	(3) LIST
	(4) SUBTITLE

	4.4 Control Instructions for Conditional Assembly
	(1) IF, ELSEIF, ELSE, ENDIF
	(2) SET, RESET

	CHAPTER 5 MACROS
	5.1 Overview of Macro
	5.2 Utilization of Macros
	5.2.1 Macrodefinition
	5.2.2 Macro reference
	5.2.3 Macroexpansion

	5.3 Symbols within Macro

	CHAPTER 6 PRODUCT UTILIZATION
	APPENDIX A LIST OF RESERVED WORDS
	APPENDIX B LIST OF DIRECTIVES
	APPENDIX C INSTRUCTION SET OF uCOM-78K/I
	APP C-1. Instruction Set and Its Operation
	APP C-2. Instruction Codes

	APPENDIX D MAXIMUM PERFORMANCE CHARACTERISTICS

